系列目录(系列更新中)

1.概述
- 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息。
- 输入:语料库
- 输出:词向量
- 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。
开始 -> 统计共现矩阵 -> 训练词向量 -> 结束
2.统计共现矩阵
设共现矩阵为X,其元素为
X
i
,
j
X_{i,j}
Xi,j。
X
i
,
j
X_{i,j}
Xi,j的意义为:在整个语料库中,单词i和单词j共同出现在一个窗口中的次数。
举个栗子:
设有语料库:
i love you but you love him i am sad
这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:
窗口标号 | 中心词 | 窗口内容 |
---|---|---|
0 | i | i love you |
1 | love | i love you but |
2 | you | i love you but you |
3 | but | love you but you love |
4 | you | you but you love him |
5 | love | but you love him i |
6 | him | you love him i am |
7 | i | love him i am sad |
8 | am | him i am sad |
9 | sad | i am sad |
窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。 | ||
以窗口5为例说明如何构造共现矩阵: | ||
中心词为love,语境词为but、you、him、i;则执行: |
X
l
o
v
e
,
b
u
t
+
=
1
X_{love,but}+=1
Xlove,but+=1
X
l
o
v
e
,
y
o
u
+
=
1
X_{love,you}+=1
Xlove,you+=1
X
l
o
v
e
,
h
i
m
+
=
1
X_{love,him}+=1
Xlove,him+=1
X
l
o
v
e
,
i
+
=
1
X_{love,i}+=1
Xlove,i+=1
使用窗口将整个语料库遍历一遍,即可得到共现矩阵X。
3.使用GloVe模型训练词向量
3.1.模型公式
先看模型,代价函数长这个样子:
J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=\sum_{i,j}^Nf(X_{i,j})(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2 J=i,j∑Nf(Xi,j)(viTvj+bi+bj−log(Xi,j))2
v
i
v_{i}
vi,
v
j
v_{j}
vj是单词i和单词j的词向量,
b
i
b_{i}
bi,
b
j
b_{j}
bj是两个标量(作者定义的偏差项),f是权重函数(具体函数公式及功能下一节介绍),N是词汇表的大小(共现矩阵维度为N*N)。
可以看到,GloVe模型没有使用神经网络的方法。
3.2.模型怎么来的
那么作者为什么这么构造模型呢?首先定义几个符号:
X i = ∑ j = 1 N X i , j X_{i}=\sum_{j=1}^NX_{i,j} Xi=j=1∑NXi,j
其实就是矩阵单词i那一行的和;
P
i
,
k
=
X
i
,
k
X
i
P_{i,k}=\dfrac{X_{i,k}}{X_{i}}
Pi,k=XiXi,k
条件概率,表示单词k出现在单词i语境中的概率;
r
a
t
i
o
i
,
j
,
k
=
P
i
,
k
P
j
,
k
ratio_{i,j,k}=\dfrac{P_{i,k}}{P_{j,k}}
ratioi,j,k=Pj,kPi,k
两个条件概率的比率。
作者的灵感是这样的:
作者发现,
r
a
t
i
o
i
,
j
,
k
ratio_{i,j,k}
ratioi,j,k这个指标是有规律的,规律统计在下表:
r a t i o i , j , k ratio_{i,j,k} ratioi,j,k的值 | 单词j,k相关 | 单词j,k不相关 |
---|---|---|
单词i,k相关 | 趋近1 | 很大 |
单词i,k不相关 | 很小 | 趋近1 |
很简单的规律,但是有用。 | ||
思想:假设我们已经得到了词向量,如果我们用词向量 v i v_{i} vi、 v j v_{j} vj、 v k v_{k} vk通过某种函数计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息。 | ||
设用词向量 v i v_{i} vi、 v j v_{j} vj、 v k v_{k} vk计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k的函数为 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi,vj,vk)(我们先不去管具体的函数形式),那么应该有: |
P i , k P j , k = r a t i o i , j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=ratio_{i,j,k}=g(v_{i},v_{j},v_{k}) Pj,kPi,k=ratioi,j,k=g(vi,vj,vk)
即:
P
i
,
k
P
j
,
k
=
g
(
v
i
,
v
j
,
v
k
)
\dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k})
Pj,kPi,k=g(vi,vj,vk)
即二者应该尽可能地接近;
很容易想到用二者的差方来作为代价函数:
J
=
∑
i
,
j
,
k
N
(
P
i
,
k
P
j
,
k
−
g
(
v
i
,
v
j
,
v
k
)
)
2
J=\sum_{i,j,k}^N(\dfrac{P_{i,k}}{P_{j,k}}-g(v_{i},v_{j},v_{k}))^2
J=i,j,k∑N(Pj,kPi,k−g(vi,vj,vk))2
但是仔细一看,模型中包含3个单词,这就意味着要在NNN的复杂度上进行计算,太复杂了,最好能再简单点。
现在我们来仔细思考
g
(
v
i
,
v
j
,
v
k
)
g(v_{i},v_{j},v_{k})
g(vi,vj,vk),或许它能帮上忙;
作者的脑洞是这样的:
- 要考虑单词i和单词j之间的关系,那 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi,vj,vk)中大概要有这么一项吧: v i − v j v_{i}-v_{j} vi−vj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么 v i − v j v_{i}-v_{j} vi−vj大概是个合理的选择;
- r a t i o i , j , k ratio_{i,j,k} ratioi,j,k是个标量,那么 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi,vj,vk)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k (v_{i}-v_{j})^Tv_{k} (vi−vj)Tvk。
- 然后作者又往
(
v
i
−
v
j
)
T
v
k
(v_{i}-v_{j})^Tv_{k}
(vi−vj)Tvk的外面套了一层指数运算exp(),得到最终的
g
(
v
i
,
v
j
,
v
k
)
=
e
x
p
(
(
v
i
−
v
j
)
T
v
k
)
g(v_{i},v_{j},v_{k})=exp((v_{i}-v_{j})^Tv_{k})
g(vi,vj,vk)=exp((vi−vj)Tvk);
最关键的第3步,为什么套了一层exp()?
套上之后,我们的目标是让以下公式尽可能地成立:
P i , k P j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k}) Pj,kPi,k=g(vi,vj,vk)
即:
P
i
,
k
P
j
,
k
=
e
x
p
(
(
v
i
−
v
j
)
T
v
k
)
\dfrac{P_{i,k}}{P_{j,k}}=exp((v_{i}-v_{j})^Tv_{k})
Pj,kPi,k=exp((vi−vj)Tvk)
即:
P
i
,
k
P
j
,
k
=
e
x
p
(
v
i
T
v
k
−
v
j
T
v
k
)
\dfrac{P_{i,k}}{P_{j,k}}=exp(v_{i}^Tv_{k}-v_{j}^Tv_{k})
Pj,kPi,k=exp(viTvk−vjTvk)
即:
P
i
,
k
P
j
,
k
=
e
x
p
(
v
i
T
v
k
)
e
x
p
(
v
j
T
v
k
)
\dfrac{P_{i,k}}{P_{j,k}}=\dfrac{exp(v_{i}^Tv_{k})}{exp(v_{j}^Tv_{k})}
Pj,kPi,k=exp(vjTvk)exp(viTvk)
然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即:
P
i
,
k
=
e
x
p
(
v
i
T
v
k
)
{P_{i,k}}={exp(v_{i}^Tv_{k})}
Pi,k=exp(viTvk)并且
P
j
,
k
=
e
x
p
(
v
j
T
v
k
)
{P_{j,k}}={exp(v_{j}^Tv_{k})}
Pj,k=exp(vjTvk)
然而分子分母形式相同,就可以把两者统一考虑了,即:
P
i
,
j
=
e
x
p
(
v
i
T
v
j
)
{P_{i,j}}={exp(v_{i}^Tv_{j})}
Pi,j=exp(viTvj)
本来我们追求:
P
i
,
k
P
j
,
k
=
g
(
v
i
,
v
j
,
v
k
)
\dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k})
Pj,kPi,k=g(vi,vj,vk)
现在只需要追求:
P
i
,
j
=
e
x
p
(
v
i
T
v
j
)
{P_{i,j}}={exp(v_{i}^Tv_{j})}
Pi,j=exp(viTvj)
两边取个对数:
l
o
g
(
P
i
,
j
)
=
v
i
T
v
j
log(P_{i,j})=v_{i}^Tv_{j}
log(Pi,j)=viTvj
那么代价函数就可以简化为:
J
=
∑
i
,
j
N
(
l
o
g
(
P
i
,
j
)
−
v
i
T
v
j
)
2
J=\sum_{i,j}^N(log(P_{i,j})-v_{i}^Tv_{j})^2
J=i,j∑N(log(Pi,j)−viTvj)2
现在只需要在NN的复杂度上进行计算,而不是NN*N,现在关于为什么第3步中,外面套一层exp()就清楚了,正是因为套了一层exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。
然而,出了点问题。
仔细看这两个式子:
l
o
g
(
P
i
,
j
)
=
v
i
T
v
j
和
l
o
g
(
P
j
,
i
)
=
v
j
T
v
i
log(P_{i,j})=v_{i}^Tv_{j}和log(P_{j,i})=v_{j}^Tv_{i}
log(Pi,j)=viTvj和log(Pj,i)=vjTvi
l
o
g
(
P
i
,
j
)
log(P_{i,j})
log(Pi,j)不等于
l
o
g
(
P
j
,
i
)
log(P_{j,i})
log(Pj,i)但是
v
i
T
v
j
v_{i}^Tv_{j}
viTvj等于
v
j
T
v
i
v_{j}^Tv_{i}
vjTvi;即等式左侧不具有对称性,但是右侧具有对称性。
数学上出了问题。
补救一下好了。
现将代价函数中的条件概率展开:
l
o
g
(
P
i
,
j
)
=
v
i
T
v
j
log(P_{i,j})=v_{i}^Tv_{j}
log(Pi,j)=viTvj
即为:
l
o
g
(
X
i
,
j
)
−
l
o
g
(
X
i
)
=
v
i
T
v
j
log(X_{i,j})-log(X_{i})=v_{i}^Tv_{j}
log(Xi,j)−log(Xi)=viTvj
将其变为:
l
o
g
(
X
i
,
j
)
=
v
i
T
v
j
+
b
i
+
b
j
log(X_{i,j})=v_{i}^Tv_{j}+b_{i}+b_{j}
log(Xi,j)=viTvj+bi+bj
即添了一个偏差项
b
j
b_{j}
bj,并将
l
o
g
(
X
i
)
log(X_{i})
log(Xi)吸收到偏差项
b
i
b_{i}
bi中。
于是代价函数就变成了:
J
=
∑
i
,
j
N
(
v
i
T
v
j
+
b
i
+
b
j
−
l
o
g
(
X
i
,
j
)
)
2
J=\sum_{i,j}^N(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2
J=i,j∑N(viTvj+bi+bj−log(Xi,j))2
然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善:
J
=
∑
i
,
j
N
f
(
X
i
,
j
)
(
v
i
T
v
j
+
b
i
+
b
j
−
l
o
g
(
X
i
,
j
)
)
2
J=\sum_{i,j}^Nf(X_{i,j})(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2
J=i,j∑Nf(Xi,j)(viTvj+bi+bj−log(Xi,j))2
具体权重函数应该是怎么样的呢?
首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为:
f
(
x
)
=
{
(
x
/
x
m
a
x
)
0.75
,
if
x
<
x
m
a
x
1
,
if
x
>
=
x
m
a
x
f(x) = \begin{cases} (x/xmax)^{0.75}, & \text{if $x < xmax$} \\ 1, & \text{if $x >= xmax$} \end{cases}
f(x)={(x/xmax)0.75,1,if x<xmaxif x>=xmax
到此,整个模型就介绍完了。
3.3.Glove和skip-gram、CBOW模型对比
Cbow/Skip-Gram 是一个local context window的方法,比如使用NS来训练,缺乏了整体的词和词的关系,负样本采用sample的方式会缺失词的关系信息。
另外,直接训练Skip-Gram类型的算法,很容易使得高曝光词汇得到过多的权重
Global Vector融合了矩阵分解Latent Semantic Analysis (LSA)的全局统计信息和local context window优势。融入全局的先验统计信息,可以加快模型的训练速度,又可以控制词的相对权重。
我的理解是skip-gram、CBOW每次都是用一个窗口中的信息更新出词向量,但是Glove则是用了全局的信息(共线矩阵),也就是多个窗口进行更新
4.实战教程
GloVe 教程之实战入门+python gensim 词向量
参考链接:
理解GloVe模型
