LA 5135 Mining Your Own Business (求割点与BCC)

题目大意:n个点,m条边,选择尽量少的点作为太平井,使得删除任意一个点,其余顶点都有到太平井的路径。问需要安装的最少的太平井数目,以及对应的方案数。

模型:无向图中选择尽量少的点涂黑(太平井),使得删除任意一个点后,每个连通分量至少有一个黑点。

分析后发现当点-双连通分量中割点的数目为1时,选择其余任意一个非割点的顶点涂黑即可;当整个图没有割点时,任意选两个点涂黑即可。


#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define maxn 50005
struct Edge
{
    int u,v;
};
int dfn[maxn],iscut[maxn],bccno[maxn],dfs_clock,bcc_cnt;
vector<int> G[maxn],bcc[maxn];
stack<Edge> S;


int dfs(int u,int fa) //u在dfs树中的父节点为fa。
{
    int lowu=dfn[u]=++dfs_clock,child=0;
    for(int i=0; i<G[u].size(); ++i)
    {
        int v=G[u][i];
        Edge e=(Edge)
        {
            u,v
        };
        if(!dfn[v]) //没有访问过v
        {
            S.push(e);
            ++child;
            int lowv=dfs(v,u);
            lowu=min(lowu,lowv);//用后代的low函数更新自己
            if(lowv>=dfn[u])
            {
                iscut[u]=1;
                bcc_cnt++;
                bcc[bcc_cnt].clear();//bcc从1开始编号!!!!!
                for(;;)
                {
                    Edge x=S.top();
                    S.pop();
                    if(bccno[x.u]!=bcc_cnt)
                    {
                        bcc[bcc_cnt].push_back(x.u);
                        bccno[x.u]=bcc_cnt;
                    }
                    if(bccno[x.v]!=bcc_cnt)
                    {
                        bcc[bcc_cnt].push_back(x.v);
                        bccno[x.v]=bcc_cnt;
                    }
                    if(x.u==u&&x.v==v) break;
                }
            }


        }
        else if(dfn[v]<dfn[u]&&v!=fa)   //用反向边更新自身
            {
                S.push(e);
                lowu=min(lowu,dfn[v]);
            }
    }
    if(fa<0&&child==1) iscut[u]=0;  //不要忘记这句啊!!!!!
    return lowu;
}


void find_bcc(int n){
    memset(dfn,0,sizeof(dfn));
    memset(iscut,0,sizeof(iscut));
    memset(bccno,0,sizeof(bccno));
    dfs_clock=bcc_cnt=0;
    for(int i=0;i<n;++i) if(!dfn[i]) dfs(i,-1);
}




int main()
{
    int ca=1,i,m,n=0,x,y,j;
    while(~scanf("%d",&m)&&m){
        for(i=0;i<maxn;++i) G[i].clear();
        while(m--){
            scanf("%d%d",&x,&y);
            --x,--y;
            G[x].push_back(y);
            G[y].push_back(x);
            n=max(n,max(x,y));
        }
        find_bcc(n);
        LL ans1=0,ans2=1;
        for(i=1;i<=bcc_cnt;++i){
            int cut_cnt=0;
            for(j=0;j<bcc[i].size();++j)
                if(iscut[bcc[i][j]]) ++cut_cnt;
            if(cut_cnt==1) {
                ++ans1;
                ans2*=(LL)(bcc[i].size()-cut_cnt);
            }
        }
        if(bcc_cnt==1) {ans1=2;ans2=(LL)bcc[1].size()*(bcc[1].size()-1)/2;}
        printf("Case %d: %lld %lld\n",ca++,ans1,ans2);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值