题目大意:n个点,m条边,选择尽量少的点作为太平井,使得删除任意一个点,其余顶点都有到太平井的路径。问需要安装的最少的太平井数目,以及对应的方案数。
模型:无向图中选择尽量少的点涂黑(太平井),使得删除任意一个点后,每个连通分量至少有一个黑点。
分析后发现当点-双连通分量中割点的数目为1时,选择其余任意一个非割点的顶点涂黑即可;当整个图没有割点时,任意选两个点涂黑即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define maxn 50005
struct Edge
{
int u,v;
};
int dfn[maxn],iscut[maxn],bccno[maxn],dfs_clock,bcc_cnt;
vector<int> G[maxn],bcc[maxn];
stack<Edge> S;
int dfs(int u,int fa) //u在dfs树中的父节点为fa。
{
int lowu=dfn[u]=++dfs_clock,child=0;
for(int i=0; i<G[u].size(); ++i)
{
int v=G[u][i];
Edge e=(Edge)
{
u,v
};
if(!dfn[v]) //没有访问过v
{
S.push(e);
++child;
int lowv=dfs(v,u);
lowu=min(lowu,lowv);//用后代的low函数更新自己
if(lowv>=dfn[u])
{
iscut[u]=1;
bcc_cnt++;
bcc[bcc_cnt].clear();//bcc从1开始编号!!!!!
for(;;)
{
Edge x=S.top();
S.pop();
if(bccno[x.u]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(x.u);
bccno[x.u]=bcc_cnt;
}
if(bccno[x.v]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(x.v);
bccno[x.v]=bcc_cnt;
}
if(x.u==u&&x.v==v) break;
}
}
}
else if(dfn[v]<dfn[u]&&v!=fa) //用反向边更新自身
{
S.push(e);
lowu=min(lowu,dfn[v]);
}
}
if(fa<0&&child==1) iscut[u]=0; //不要忘记这句啊!!!!!
return lowu;
}
void find_bcc(int n){
memset(dfn,0,sizeof(dfn));
memset(iscut,0,sizeof(iscut));
memset(bccno,0,sizeof(bccno));
dfs_clock=bcc_cnt=0;
for(int i=0;i<n;++i) if(!dfn[i]) dfs(i,-1);
}
int main()
{
int ca=1,i,m,n=0,x,y,j;
while(~scanf("%d",&m)&&m){
for(i=0;i<maxn;++i) G[i].clear();
while(m--){
scanf("%d%d",&x,&y);
--x,--y;
G[x].push_back(y);
G[y].push_back(x);
n=max(n,max(x,y));
}
find_bcc(n);
LL ans1=0,ans2=1;
for(i=1;i<=bcc_cnt;++i){
int cut_cnt=0;
for(j=0;j<bcc[i].size();++j)
if(iscut[bcc[i][j]]) ++cut_cnt;
if(cut_cnt==1) {
++ans1;
ans2*=(LL)(bcc[i].size()-cut_cnt);
}
}
if(bcc_cnt==1) {ans1=2;ans2=(LL)bcc[1].size()*(bcc[1].size()-1)/2;}
printf("Case %d: %lld %lld\n",ca++,ans1,ans2);
}
return 0;
}