一、下载Anaconda并安装
官网下载地址:https://www.continuum.io/downloads/
下载完毕后,在terminal中到达文件所在位置
bash Ana.......(快捷键Tab) .sh
一路按回车键,中间记得输入一个yes就可以顺利完成安装。
安装完后,配置环境路径
# 将anaconda的bin目录加入PATH,根据版本不同,也可能是~/anaconda3/bin
echo 'export PATH="~/anaconda2/bin:$PATH"' >> ~/.bashrc
# 更新bashrc以立即生效
source ~/.bashrc
输入python。看见Anaconda就对了
二、Conda相关配置
Conda的环境管理功能允许我们同时安装若干不同版本的Python,并能自由切换。对于上述安装过程,假设我们采用的是Python 2.7对应的安装包,那么Python 2.7就是默认的环境(默认名字是root,注意这个root不是超级管理员的意思)。
# 创建一个名为tenseorflow的环境,指定Python版本是3.5
conda create --name tensorflow python=3.5
# 安装好后,使用activate激活某个环境
activate tensorflow # for Windows
source activate tensorflow # for Linux & Mac
# 激活后,会发现terminal输入的地方多了tensorflow 的字样,实际上,此时系统做的事情就是把默认2.7环境从PATH中去除,再把3.5对应的命令加入PATH
# 此时,再次输入
python --version
# 可以得到`Python 3.5.3 :: Continuum Analytics, Inc.`
# 如果想返回默认的python 2.7环境,运行
deactivate tensorflow # for Windows
source deactivate tensorflow# for Linux & Mac
#可以得到`Python 2.7.13 :: Anaconda 4.3.1 (64-bit)`
# 删除一个已有的环境
conda remove --name tensorflow --all
用户安装的不同python环境都会被放在目录~/anaconda/envs下,可以在命令中运行conda info -e
查看已安装的环境,当前被激活的环境会显示有一个括号。
三、TensorFlow安装
conda install -n tensorflow -c https://conda.anaconda.org/jjhelmus tensorflow
输入y,安装相关包。
四、测试
官网上的测试程序。对一个线性数据进行训练的demo。
vi test.py
把代码粘进去
import tensorflow as tf
import numpy as np
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# Before starting, initialize the variables. We will 'run' this first.
init = tf.initialize_all_variables()
# Launch the graph.
sess = tf.Session()
sess.run(init)
# Fit the line.
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(W), sess.run(b))
# Learns best fit is W: [0.1], b: [0.3]
python test.py
万里长征第一步
五、安装sublime
个人非常喜欢sublime,良心产品呀
- 添加sublime的仓库
sudo add-apt-repository ppa:webupd8team/sublime-text-3
- 更新软件库
sudo apt-get update
- 安装sublime
sudo apt-get install sublime-text-installer
然后我们就有可爱的sublime text啦~
PPS
非常感谢sublime text的无限期试用,有能力时候一定会支持你的。