关于LBP特征等价模式的解释

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u014682691/article/details/46933123
为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该类型保留;跳变次数超过2次时,均归为一类。
通过这样的改进,二进制模式的种类大大减少,而不会丢失任何信息。模式数量由原来的2P种减少为 P ( P-1)+3种,其中P表示邻域集内的采样点数。对于3×3邻域内8个采样点来说,二进制模式由原始的256种减少为59种,这使得特征向量的维数更少,并且可以减少高频噪声带来的影响。
P ( P-1)+3种的解释:
3,指全0,全1,跳变次数超过2次的一类;
P ( P-1),跳变次数只能为2,首先确定0(或1)的位置,有P种选择;然后确定跳变的位置,由于循环性,只有P-1种选择。

展开阅读全文

没有更多推荐了,返回首页