给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x
的深度尽可能大(一个节点也可以是它自己的祖先)。”例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。
方法一:
递归。
根据题意,对于当前节点root,一定有:
- p, q全在root的左子树上
- p, q全在root的右子树上
- p, q既不全在左子树上,也不全在右子树上,包含了p,q其中一个是另一个的祖先的情况,也包含了p,q在root的左右子树上,无论哪种情况,结果都是直接返回当前节点root。
递归,因为是二叉搜索树。所以以上三个条件转化为:
- root.val > p.val && root.val > q.val
- root.val < p.val && root.val < q.val
- return root;
代码:
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
return root;
}
}
时间复杂度:O(n) 最坏情况是遍历所有节点得到答案
空间复杂度:O(h) 树高
方法二:
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
// 迭代
while (root != null) {
if (root.val > p.val && root.val > q.val) {
root = root.left;
} else if (root.val < q.val && root.val < p.val) {
root = root.right;
} else {
break;
}
}
return root;
}
}
时间复杂度:O(n) 最坏情况是遍历所有节点得到答案
空间复杂度:O(h) 树高