PRML第 47 页损失函数中交叉项为什么会消失--计算过程

在PRML的第一章1.5.5节,计算关于损失函数过程中,根据原文得到如下内容:

这里写图片描述
其中有一下推导过程:
这里写图片描述
文中只用一句话描述了为什么交叉项会消失,”Substituting into the loss function and performing the integral over t, we see that the cross-term vanishes and we obtain an expression for the loss function in the form”.
那么具体是怎么的过程呢?我们单独把交叉项拿出来:

2{y(x)E[t|x]}{E[t|x]t} 2 { y ( x ) − E [ t | x ] } { E [ t | x ] − t }

带入loss function 中,并对t进行积分,这里我们先对t积分,不考虑对x的积分。得到如下公式:
2{y(x)E[t|x]}{E[t|x]t}×p(x,t)dt ∫ 2 { y ( x ) − E [ t | x ] } { E [ t | x ] − t } × p ( x , t ) d t

可以知道,积分的左边因子是关于x的函数,对t的积分来说只是一个常数,可以放在积分的外面,只考虑积分内的内容:
2{E[t|x]t}×p(x,t)dt ∫ 2 { E [ t | x ] − t } × p ( x , t ) d t

由于 p(x,t)=p(t|x)p(x) p ( x , t ) = p ( t | x ) p ( x ) 可以得到如下公式
2{E[t|x]t}×p(t|x)p(x)dt ∫ 2 { E [ t | x ] − t } × p ( t | x ) p ( x ) d t

同样的将p(x)提到积分号外面,并不考虑,可以得到
E[t|x]×p(t|x)dtt×p(t|x)dt ∫ E [ t | x ] × p ( t | x ) d t − ∫ t × p ( t | x ) d t

一样的trick , E[t|x] E [ t | x ] 是关于x的函数,放在积分号的外面, p(t|x)dt=1 ∫ p ( t | x ) d t = 1 ,所以第一项为 E[t|x] E [ t | x ] 。另外根据定义,文中的公式1.89同样给出。可以第二项为得到:
t×p(t|x)dt=E[t|x] ∫ t × p ( t | x ) d t = E [ t | x ]

结合交叉所有的内容:
{E[t|x]E[t|x]}×p(x)×2{y(x)E[t|x]} { E [ t | x ] − E [ t | x ] } × p ( x ) × 2 { y ( x ) − E [ t | x ] }

所以交叉项为0,不会在x的积分内容中出现。
个人推理,如有问题,欢迎指出!
以上!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值