博弈问题的初步学习

例子:

     甲乙两人面对若干堆石子,其中每一堆石子的数目可以任意确定。例如图1所示的初始局面:共n=3堆,其中第一堆的石子数a1=3,第二堆石子数a2=3,第三堆石子数a3=1。两人轮流按下列规则取走一些石子,游戏的规则如下:
  每一步应取走至少一枚石子;
  每一步只能从某一堆中取走部分或全部石子;
  如果谁无法按规则取子,谁就是输家。

分析:

   1.如果初始局面只有一堆石子,则甲有必胜策略。

   2.如果初始局面有两堆石子,而且这两堆石子的数目相等,则乙有必胜策略。
     因为有两堆石子,所以甲无法一次取完;
     如果甲在一堆中取若干石子,乙便在另一堆中取同样数目的石子;
     根据对称性,在甲取了石子之后,乙总有石子可取;
     石子总数一直在减少,最后必定是甲无石子可取。

结论:

   设初始局面S可以分解成两个子局面A和B(分解理论)。

   *若A和B一胜一负,则S胜。

    不妨设A胜B负;
    想象有两个桌子A和B,桌子上分别放着A局面和B局面;
    因为A胜,所以甲可以保证取桌子A上的最后一个石子;
    与此同时,甲还可以保证在桌子B中走第一步的是乙;
    因为B负,所以甲还可以保证取桌子B中的最后一个石子;
    综上所述,甲可以保证两个桌子上的最后一个石子都由自己取得。

   *若A负B负,则S负。

   无论甲先从A中取,还是先从B中取,都会变成一胜一负的局面;
   因此,乙面临的局面总是“胜”局面,故甲面临的S是“负”局面。

      *若A胜B胜,则有时S胜,有时S负。

此类搏弈游戏的一般性解法:

     用一个n元组(a1, a2, …, an),来描述游戏过程中的一个局面。
     用符号#S,表示局面S所对应的二进制数。
     用符号$(x),表示局面(x)的下一步所有可能出现的局面的集合。
     定义集合g(x):设$(x)={S1, S2, …, Sk},则g(x)={#S1, #S2, …, #Sk}。
     令非负整数集为全集,集合G(x)表示集合g(x)的补集。
     定义函数f(n):f(n)=min{G(n)},即f(n)等于集合G(n)中的最小数。
     设局面S=(a1, a2, …, an),#S=f(a1)+f(a2)+…+f(an),采用二进制数的加法。

若#S≠0,则先行者有必胜策略;若#S=0,则后行者有必胜策略。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值