这里只记录,不作答,除了那道概率题,因为答案因人而异,
而且很多问题的答案是需要自己的经验回答的,
标准答案反而可能会使得面试官反感而扣分
现场发挥很重要,概率题我卡顿半天
谢谢面试官的耐心引导
- 核函数的定义,介绍几种核函数
- 如何理解深度学习中的分布和数据的一致性
- 深度学习的损失函数对分割的影响(具体),介绍几种损失函数
- 概率题:你和面试官摇骰子比大小,面试官可以摇n次选最大的一次,而你只能摇一次,问你获胜的概率
1 6 ∗ ( ( 1 6 ) n + . . . + ( 5 6 ) n ) \frac{1}{6}*((\frac{1}{6})^n + ... + (\frac{5}{6})^n ) 61∗((61)n+...+(65)n) - 你有用到Unet并且改进了,那么解释一下为什么网络要做下采样和上采样?
- 详细解释一下你改进的网络的细节
- 编程题:编程将驼峰型的变量命名改成下划线的命名