深度学习
文章平均质量分 93
LYRIQ777
云想霓裳花想容,绮烟遥袅旖亦浓
展开
-
目标检测(凑字数,凑字数,为什么标题一定要五个字)
•物体识别是要分辨出图片中有什么物体,输入是图片,输出是类别标签和概率。物体检测算法不仅要检测图片中有什么物体,还要输出物体的外框(x, y, width, height)来定位物体的位置。•object detection,也可以叫location(房地产最重要的是location location 还是TMD location)就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。•要解决的问题就是物体在哪里以及是什么的整个流程问题。•。原创 2023-08-28 11:30:27 · 325 阅读 · 0 评论 -
卷积神经网络
CNN就是著名的卷积神经网络,是一种前馈神经网络。CNN不同于传统的神经网络只有线性连接,CNN包括卷积(convolution)操作、汇合(pooling)操作和非线性激活函数映射(即线性连接)等等。经典的CNN网络有Alex-Net、VGG-Nets、Resnet等。之前提到了卷积,什么?!卷什么,卷积!卧槽,DNA动了,积你太美!!!baby。原创 2023-07-30 23:31:36 · 1121 阅读 · 6 评论 -
推理和训练
输入的数据被称为训练数据,一个模型需要通过一个训练过程,在这个过程中进行预期判断,如果错误了再进行修正,训练过程一直持续到基于训练数据达到预期的精确性。其关键方法是分类和回归,比如逻辑回归(Logistic Regression)和BP神经网络(Back Propagation Neural Network)。举个栗子:小时候考试,考不好,开完家长会,回去就是皮带炒肉丝,臭小子,下次再考不好,劳资打死你,你躲在角落瑟瑟发抖,不敢说话。原创 2023-07-28 18:31:56 · 295 阅读 · 0 评论 -
深度学习与神经网络
点成线,线成面(网)生物神经网络的基本工作原理:一个神经元的输入端有多个树突,主要是用来接收输入信息的。输入信息经过突触处理,将输入的信息累加,当处理后的输入信息大于某一个特定的阈值,就会把信息通过轴突传输出去,这时称神经元被激活。相反,当处理后的输入信息小于阈值时,神经元就处于抑制状态,它不会像其他神经元传递信息。或者传递很小的信息。举个例子,你被蚊子叮的时候,可能压根就感觉不到,但是要是别人给你一个大逼兜,那你要不就是捂着脸嘤嘤嘤,要不就是直接跳起来跟他干了。原创 2023-07-14 15:52:42 · 26999 阅读 · 0 评论