CV
文章平均质量分 80
CV学习笔记
LYRIQ777
云想霓裳花想容,绮烟遥袅旖亦浓
展开
-
目标检测(凑字数,凑字数,为什么标题一定要五个字)
•物体识别是要分辨出图片中有什么物体,输入是图片,输出是类别标签和概率。物体检测算法不仅要检测图片中有什么物体,还要输出物体的外框(x, y, width, height)来定位物体的位置。•object detection,也可以叫location(房地产最重要的是location location 还是TMD location)就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。•要解决的问题就是物体在哪里以及是什么的整个流程问题。•。原创 2023-08-28 11:30:27 · 325 阅读 · 0 评论 -
SIFT(尺度不变特征变换)
4. 将第1组倒数第三层图像作比例因子为2的降采样(尺寸减半),得到的图像作为第2组的第1层,然后对第2组的第1层图像做平滑因子为σ的高斯平滑,得到第2组的第2层,就像步骤2中一样,如此得到第2组的L层图像,同组内它们的尺寸是一样的,对应的平滑系数分别为:0,σ,kσ,k^2σ,k^3σ……举个栗子:你拍了一张美女照,看到的肯定是整体,然后在你细看的时候,化身成了列文虎克,发现了华点,那么这个时候,你运用你灵巧的双指,放大了图片,华点的细节展现无遗,你发现了新大陆,然后默默打开了浏览器,接着一套连招。原创 2023-07-09 15:44:36 · 1259 阅读 · 0 评论 -
图像聚类算法
聚类从广义上说,聚类就是将数据集中在某些方面相似的数据成员放在一起。一个聚类就是一些数据实例的集合,其中处于相同聚类中的数据元素彼此相似,但是处于不同聚类中的元素彼此不同。由于在聚类中那些表示数据类别的分类或分组信息是没有的,即这些数据是没有标签的,所以聚类通常被归为无监督学习(Unsupervised Learning)引申一下有监督学习,半监督学习,无监督学习区分有监督和无监督,就是看是否有监督(supervised)(这TM不是废话嘛!确实是废话),也就看输入数据是否有标签(label)。原创 2023-07-04 10:06:35 · 896 阅读 · 0 评论 -
点云模型概述
3.定义Spin image的参数,Spin image是一个具有一定大小(行数列数)、分辨率(二维网格大小)的二维图像(或者说网格)。4. 将圆柱体内的三维坐标投影到二维Spin image,这一过程可以理解为一个Spin image绕着法向量n旋转360度,Spin image扫到的三维空间的点会落到Spin image的网格中。5. 根据spin image中的每个网格中落入的点不同,计算每个网格的强度I。原创 2023-07-03 14:45:23 · 1175 阅读 · 0 评论 -
立体视觉概述
立体视觉是一种计算机视觉技术,其目的是从两幅或两幅以上的图像中推理出图像中每个像素点的深度信息。机器人、辅助驾驶/无人驾驶、无人机等等。立体视觉借鉴了人类双眼的“视差”原理,即左、右眼对于真实世界中某一物体的观测是存在差异的,我们的大脑正是利用了左、右眼的差异,使得我们能够辨识物体的远近。(视差)不是很理解?把一只眼睛捂住.P为空间中的点,P和P'是点P在左右像平面上的成像点,f是焦距,OR和OT是左右相机的光心。由下图可见左右两个相机的光轴是平行的。原创 2023-06-23 17:24:18 · 390 阅读 · 0 评论 -
欧式变换、相似变换、仿射变换、射影变换
它左上角为可逆矩阵 A,右上为平移 t,左下缩放。由于采用齐坐标,当 时吗我们可以对整个矩阵除于 v得到一个右下角为 1 的矩阵;否则,则得到右下角为 0 的矩阵。因此,2D 的射影变换一共有8个自由度,3D则共有15个自由度。旋转部分多了一个缩放因子 s ,在对向量旋转之后,可以在 x , y , z 三个坐标上进行均匀的缩放。仿射变换只要求 A 是一个可逆矩阵,而不必是正交矩阵。仿射变换也叫正交投影。相似变换比欧氏变换多了一个自由度,它。欧式变换保持了向量的长度和夹角,原创 2023-06-23 15:46:22 · 595 阅读 · 0 评论 -
相机畸变概述
镜头的畸变分为径向畸变和切向畸变两类上节说到了相机模型,那么这节说说相机的畸变如果有手机爱好者,听到很多测评进行测评的时候,都会提到一个词,广角防畸变,啥意思,举个栗子来看下信号塔,是不是已经开始歪了,这就是0.6倍,超广角模式下的畸变(其实一倍也畸变,小声BB)为啥会畸变呢,仔细看镜头,镜头是曲面的,光从镜头射入的时候和射入平面玻璃的时候,路径是不一样的,玩过放大镜和哈哈镜的都有印象吧.小时候拿些放大镜对着太阳烧东西,你烧通老爹的几次裤衩,又挨了老爹多少次的暴打.原创 2023-06-23 15:15:36 · 949 阅读 · 0 评论 -
相机模型概述
齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。个人理解就是二维凑三维,三维凑四维,以此类推欧氏变换欧几里得变换也称为欧式变换、刚性变换,是一种较为基本的变换,通过欧几里得变换,可以改变物体的空间位置,却不改变物体的形状、大小。说白了,就是平移和旋转,比如我在死亡的边缘疯狂横跳,旋转,跳跃,画着圈,哎~我还是我,你能拿我怎么办?(我又跳进来了,打我呀,打我呀,笨蛋)原创 2023-06-23 14:37:13 · 984 阅读 · 0 评论 -
Canny边缘检测算法
Canny是目前最优秀的边缘检测算法之一,其目标为找到一个最优的边缘,其最优边缘的定义为:1、好的检测:算法能够尽可能的标出图像中的实际边缘2、好的定位:标识出的边缘要与实际图像中的边缘尽可能接近3、最小响应:图像中的边缘只能标记一次。原创 2023-06-05 05:38:53 · 4321 阅读 · 0 评论 -
图像边缘提取
什么是图像边缘:什么是图像边缘:图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。什么是灰度值:指图像中点的颜色深度,范围一般从0到255,白色为255,黑色为0.什么是边缘提取:边缘检测主要是图象的灰度变化的度量、检测和定位。原创 2023-06-05 04:37:57 · 1301 阅读 · 0 评论 -
特征选择及特征提取
从N个特征中选择其中M(M原创 2023-05-30 01:28:44 · 897 阅读 · 0 评论 -
图像滤波概述
图像滤波1.图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。2.消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。3.平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。原创 2023-05-24 23:21:41 · 1076 阅读 · 0 评论 -
图像噪声类别
图像噪声是图像在获取或是传输过程中受到随机信号干扰,妨碍人们对图像理解及分析处理的信号。图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产生图像噪声的主要因素是所用的传输信道受到了噪声的污染。原创 2023-05-23 23:44:46 · 2114 阅读 · 0 评论