mxnet简介: http://mxnet.readthedocs.org/en/latest/
这是比较新的深度学习框架(号称第二代的深度学习框架),它的核心使用C++实现,并提供C风格的头文件。对比其他的深度学习框架,如caffe、theano,它的特点主要是:
1. 编程上,它将声明式编程和命令式编程相结合。使得代码运行更快捷(这是事实)、语义更容易理解(这就见仁见智了,反正看的挺头疼)
2. 自身实现上,它的底层数据格式引用了theano里面的tensor和TBlob的形式,使得代码清晰简洁(如果不懂theano的话,看起来又相对费劲一些)
3. 效果上,它的速度和caffe相近,远高于tensorFlow,但是mxnet本身支持了分布式运算,因而在速度上必将由于caffe;内存消耗小是它的主要特征,这意味着它应该可以同时读入更多的图片(batch_size可以更大),但是没测试过。
网上有很多对比,简单贴一个链接:
https://www.zhihu.com/question/36086842/answer/66118672
mxnet配置:
配置很简单,按照官网的流程,本人在Ubuntu14.04上配置
注意:如果要修改配置,需要在修改mxnet/make/config.mk,然后cp mxnet/make/config.mk mxnet/config.mk。它默认没使用cuda,一般我们都会修改配置信息,以下是我的config.mk的部分配置:
至此,它就完成基本配置了
如果还需要配置Python,则运行:
运行demo测试:这里运行最基本的mnist
运行成功,即可
网上还有另一个demo,主要运行的是example/neural-style里面的例子
http://phunter.farbox.com/post/mxnet-tutorial2