概率分布

概率分布

总结一些广泛使用的概率分布的性质。对于每个概率分布,列出一些关键的统计性质,例如期望 E[x] 、方差(或者是协方差)、众数、熵 H[x] 。所有这些分布都是指数族的成员,被广泛用作更高级的概率模型的基本模块。

  1. 伯努利分布
    这是单一二元变量的 x{0,1} 的分布。例如,抛硬币的结果。它是由一个连续参数 μ[0,1] 控制,这个参数表示 x=1 的概率。

    Bern(xu)=μx(1μ)1x

    E[x]=μ

    var[x]=μ(1μ)

    mode[x]={1,0,μ0.5

    H[x]=μlnμ(1μ)ln(1μ)

    伯努利分布是二项分布对单一观测的特殊情况。它对于 μ 的共轭先验分布是Beta分布。

  2. Beta分布
    这是连续变量 μ[0,1] 的分布,经常用于表示某些二元事件的概率。它有两个参数 a b。为了保证分布能够归一化,我们要求 a>0 并且 b>0

    Beta(μa,b)=Γ(a+b)Γ(a)Γ(b)μa1μb1

    E[μ]=aa+b

    var[μ]=ab(a+b)2(a+b+1)

    mode[μ]=a1a+b2

    Beta分布是伯努利分布的共轭先验,其中a和b可以分别表示为 x=1 x=0 的观测的有效先验数量。如果 a1 b1 ,那么它的概率密度是有限值,否则在 μ=0 mu=1 处会有奇异值。对于 a=b=1 的情形,它就简化成了均匀分布。Beta分布是 K 状态狄利克雷分布在K=2时的特殊情形。

  3. 二项分布
    二项分布给出了来自伯努利分布的 N 样本中观察到 m x=1的概率。伯努利分布中,观察到 x=1 的概率是 μ[0,1]
    Bin(mN,μ)=Nmμm(1μ)Nm

    E[m]=Nμ

    var[x]=Nμ(1μ)

    mode[m]=(N+1)μ

    其中 (N+1)μ 表示不超过 (N+1)μ 的最大整数。此外
    Nm=N!m!(Nm)!

    表示从 N 个完全相同的物体中选择m个物体的总方案数量。这里 m! 表示乘积 m×(m1)××2×1 。二项分布中 N=1 这一特殊情形被称为伯努利分布,对于大的 N 值,二项分布近似于高斯分布。μ的共轭先验分布是Beta分布。
  4. 狄利克雷分布
    狄利克雷分布是K个随机变量 0μk1 的多变量分布,其中 k=1,,K ,并且满足下面的限制
    0μk1k=1Kμk=1

    μ=(μ1,,μK)T α=(α1,,μK)T ,我们有
    Dir(μα)=C(α)k=1Kμαk1k

    E[μk]=αkα^

    var[μk]=αk(α^αk)α^2(α^+1)

    cov[μjμk]=αjαkα^2(α^+1)

    mode[μk]=αk1α^K

    E[lnμk]=ψ(αk)ψ(α^)

    H[μ]=k=1K(αk1){ψ(αk)ψ(α^)}lnC(α)

    其中
    C(α)=Γ(α^)Γ(α1)Γ(αK)

    并且
    α^=k=1Kαk

    这里
    ψ(a)=ddalnΓ(a)

    被称为digamma函数(Abramowitz and Stegun,1965)。为了保证概率归一化,参数 αk 满足限制 αk>0
    狄利克雷分布是多项式分布的共轭先验,是Beta分布的推广。这种情况下,参数 αk K 维二元观测向量x对应值的有效观测数据。和Beta分布相同,如果对于所有的 k 都有αk1。那么狄利克雷分布在空间中所有位置的密度均为有限值。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值