深度学习
文章平均质量分 74
zhang-zhan
这个作者很懒,什么都没留下…
展开
-
自动编码机
自动编码机(Autodencoder)自动编码机(Autoencoder)属于非监督学习,不需要对训练样本进行标记。自动编码机(Autoencoder)由三层网络组成,其中输入层神经元数量与输出层神经元数量相等,中间层神经元数量少于输入层和输出层。在网络训练期间,对每个训练样本,经过网络会在输出层产生一个新的信号,网络学习的目的就是使输出信号与输入信号尽量相似。自动编码机(Autoencoder)原创 2016-12-04 16:48:13 · 10357 阅读 · 0 评论 -
去噪自动编码机
去噪自动编码机(Denoising Autoencoder)自动编码机的主要作用是数据降维,提取特征。 原始输入xx 经过加权 (W,b)(W,b),映射函数(如:非线性函数Sigmoid)之后得到yy,在对yy反向加权映射回来成为zz。通过反复迭代两组(W,b)(W,b),使得误差函数最小,即尽可能保证zz近似于xx,即完美重构了xx.自动编码器,它没有使用数据标签来计算误差update参数,所原创 2016-12-04 20:26:39 · 1815 阅读 · 0 评论 -
概率分布
概率分布总结一些广泛使用的概率分布的性质。对于每个概率分布,列出一些关键的统计性质,例如期望E[x]E[x]、方差(或者是协方差)、众数、熵H[x]H[x]。所有这些分布都是指数族的成员,被广泛用作更高级的概率模型的基本模块。伯努利分布 这是单一二元变量的x∈{0,1}x\in\{0,1\}的分布。例如,抛硬币的结果。它是由一个连续参数μ∈[0,1]\mu\in[0,1]控制,这个参数表示x=1原创 2016-12-05 17:39:59 · 468 阅读 · 0 评论 -
多层感知机 Multi-Layer Perception Tensorflow实现
Multi-Layer Perception,多层感知机多层感知机(MLP)可以被看作是一个逻辑回归分类器,其输入数据首先使用已学习的非线性变换Φ\Phi进行转换。把输入数据映射到一个线性可分空间里。这个中间层被称为隐藏层。单隐藏层的多层感知机足以成为通用逼近器。使用许多这样的隐藏层有利于我们构建功能强大的模型,这也是深度学习的核心思想。 具有单隐藏层的多层感知机(MLP)或人工神经网络 (ANN原创 2017-11-19 14:11:02 · 3664 阅读 · 0 评论 -
梯度下降方法
梯度下降法简介 梯度下降法是最小化目标函数J(θ)J(\theta)的一种方法,旨在降低真实值和预测值之间的误差,其中θ∈Rd\theta \in \mathbb{R}^{d}为模型参数。梯度下降法利用目标函数计算参数梯度ΔθJ(θ)\Delta_{\theta}J(\theta)的反方向更新参数。学习率η\eta (learning rate)决定达到最小值或者局部最小值过程中所采用的的步长大原创 2017-12-25 17:50:59 · 544 阅读 · 0 评论