多层感知机 Multi-Layer Perception Tensorflow实现

本文介绍了多层感知机(MLP),它是一个逻辑回归分类器的非线性扩展,通过隐藏层将输入映射到线性可分空间。单隐藏层的MLP是通用逼近器,深度学习中常用多层结构增强模型能力。内容涉及MLP的数学表示及其在Tensorflow中的实现。
摘要由CSDN通过智能技术生成

Multi-Layer Perception,多层感知机

多层感知机(MLP)可以被看作是一个逻辑回归分类器,其输入数据首先使用已学习的非线性变换 Φ 进行转换。把输入数据映射到一个线性可分空间里。这个中间层被称为隐藏层。单隐藏层的多层感知机足以成为通用逼近器。使用许多这样的隐藏层有利于我们构建功能强大的模型,这也是深度学习的核心思想。
具有单隐藏层的多层感知机(MLP)或人工神经网络 (ANN)可用如下图形表示:多层感知机网络
通常来说,单隐藏层的MLP就是一个映射函数 f:RDRL D 是输入向量 x 的大小, L 是输出向量 f(x) 的大小,转化公式如下:

f(x)=G(b(2)+W(2)(s(b(1)+W
作为一个AI语言模型,我没有感受和观点,但是我可以根据已有的信息为您生成一篇关于当代世界政治和经济的文章。 当代世界政治和经济状况十分复杂,各国间的合作与竞争交织不清,经济全球化和信息技术革命的浪潮不断推动着世界的发展。 首先,世界政治格局正在发生深刻的变化。美国作为世界上最大的经济体和超级大国,一直扮演着世界警察的角色,但是随着美国国内政治的动荡和外交政策的变化,美国的全球影响力正在逐渐下降。与此同时,中国的崛起引起了世界的关注。中国的经济实力和影响力不断扩大,中国在国际事务中的发言权也在不断提高。 其次,全球经济格局也在发生深刻变化。经济全球化的趋势愈发明显,各国之间的经济联系更加紧密,但是全球经济增长放缓、贸易摩擦和保护主义倾向的加剧,也给世界经济带来了一定的挑战和风险。此外,数字经济也成为全球经济的重要组成部分,信息技术的发展带来了新的经济增长点和商业模式。 再次,全球治理面临着诸多挑战。随着全球化和信息技术的发展,各国间的合作和竞争变得更加复杂。国际组织和机制的作用也面临新的考验。同时,全球治理也面临着气候变化、恐怖主义、难民危机等全球性问题的挑战。 综上所述,当代世界政治和经济面临着巨大的挑战和机遇。各国需要加强合作,推动全球化和数字经济的发展,加强全球治理,应对全球性问题。同时,各国也需要更加注重自身的发展,提高自身的竞争力和创新能力,才能在全球经济和政治中占据更加有利的地位。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值