多层感知机 Multi-Layer Perception Tensorflow实现

本文介绍了多层感知机(MLP),它是一个逻辑回归分类器的非线性扩展,通过隐藏层将输入映射到线性可分空间。单隐藏层的MLP是通用逼近器,深度学习中常用多层结构增强模型能力。内容涉及MLP的数学表示及其在Tensorflow中的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-Layer Perception,多层感知机

多层感知机(MLP)可以被看作是一个逻辑回归分类器,其输入数据首先使用已学习的非线性变换 Φ 进行转换。把输入数据映射到一个线性可分空间里。这个中间层被称为隐藏层。单隐藏层的多层感知机足以成为通用逼近器。使用许多这样的隐藏层有利于我们构建功能强大的模型,这也是深度学习的核心思想。
具有单隐藏层的多层感知机(MLP)或人工神经网络 (ANN)可用如下图形表示:多层感知机网络
通常来说,单隐藏层的MLP就是一个映射函数 f:RDRL D 是输入向量 x 的大小, L 是输出向量 f(x) 的大小,转化公式如下:

f(x)=G(b(2)+W(2)(s(b(1)+W
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值