线性代数--矩阵消元

本文详细介绍了线性代数中的矩阵消元法,包括如何通过行变换消除矩阵中的主元,讨论了主元选择的重要性,矩阵不可逆的情况,以及回代法求解。还探讨了矩阵乘法的结合律、置换矩阵和可逆矩阵的概念。
摘要由CSDN通过智能技术生成

消元(elimination)

示例:
{ x + 2 y + z = 2 3 x + 8 y + z = 12 4 y + z = 2 \begin{cases} x+2y+z=2\\ 3x+8y+z=12 \\ 4y+z=2 \end{cases} x+2y+z=23x+8y+z=124y+z=2
A x = b Ax=b Ax=b
对应矩阵:
∣ [ 1 ] 2 1 3 [ 8 ] 1 0 4 [ 1 ] ∣ \begin{vmatrix} [1] & 2 &1 \\ 3 & [8] & 1 \\ 0 & 4 & [1] \end{vmatrix} [1]302[8]411[1]

  • 首先消除第二行主元[1]
    ∣ [ 1 ] 2 1 3 [ 8 ] 1 0 4 [ 1 ] ∣ r o w 2 − 3 ∗ r o w 1 → ∣ [ 1 ] 2 1 0 [ 2 ] − 2 0 4 [ 1 ] ∣ \begin{vmatrix} [1] & 2 &1 \\ 3 & [8] & 1 \\ 0 & 4 & [1] \end{vmatrix} \underrightarrow{row2 - 3 * row 1} \begin{vmatrix} [1] & 2 &1 \\ 0 & [2] & -2 \\ 0 & 4 & [1] \end{vmatrix} [1]302[8]411[1] row23row1[1]002[2]412[1]
    • 第三行主元[1]已被消除,无需消元
    • 接下来,消除第三行主元[2]
      ∣ [ 1 ] 2 1 0 [ 2 ] − 2 0 4 [ 1 ] ∣ r o w 3 − 2 ∗ r o w 2 → ∣ [ 1 ] 2 1 0 [ 2 ] − 2 0 0 [ 5 ] ∣ \begin{vmatrix} [1] & 2 &1 \\ 0 & [2] & -2 \\ 0 & 4 & [1] \end{vmatrix} \underrightarrow{row3- 2 * row 2} \begin{vmatrix} [1] & 2 &1 \\ 0 & [2] & -2 \\ 0 & 0 & [5] \end{vmatrix} [1]002[2]412[1] row32row2[1]002[2]012[5]
  • 引入向量b(增广矩阵)进行消元,步骤与上面一致:
    ∣ 2 12 2 ∣ r o w 2 − 3 ∗ r o w 1 → ∣ 2 6 2 ∣ r o w 3 − 2 ∗ r o w 2 → ∣ 2 6 − 10 ∣ \begin{vmatrix} 2\\ 12\\ 2 \end{vmatrix} \underrightarrow{row2- 3 * row 1} \begin{vmatrix} 2\\ 6\\ 2 \end{vmatrix} \underrightarrow{row3- 2 * row 2} \begin{vmatrix} 2\\ 6\\ -10 \end{vmatrix} 2122 row23row1262 row32row22610
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值