利用贝叶斯分类器对fetch_20newsgroups数据集进行分类

from sklearn.datasets import fetch_20newsgroups
from sklearn.cross_validation import train_test_split
from  sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB 
from sklearn.metrics import classification_report


news = fetch_20newsgroups(subset='all')#本次使用的数据需要到互联网上下载
#查看数据
print(len(news.data))
print(news.data[0])
#对数据训练集和测试件进行划分
X_train,X_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25,random_state=33)
vec = CountVectorizer()
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)
#利用贝叶斯分类器对数据进行分类
mnb = MultinomialNB()
mnb.fit(X_train,y_train)
y_predict = mnb.predict(X_test)
print('The accuracy of Naive Bays Classifier is',mnb.score(X_test,y_test))
print(classification_report(y_test,y_predict,target_names=news.target_names))
AG's News Topic Classification Dataset Version 3, Updated 09/09/2015 ORIGIN AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html . The AG's news topic classification dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). DESCRIPTION The AG's news topic classification dataset is constructed by choosing 4 largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and testing 7,600. The file classes.txt contains a list of classes corresponding to each label. The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 4), title and description. The title and description are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值