1. 环境准备
硬件要求:
- NVIDIA RTX 显卡(需8GB显存)
- Windows 10/11 64位系统
软件依赖:
- Python 3.10或3.11
- CUDA 12.1+(需与RTX驱动匹配)
- cuDNN
- Git
2. 安装基础环境
- 安装CUDA
打开windows终端命令行输入检查显卡支持的cuda版本:nvidia-msi
命令行输入安装cuda12.1:choco install cuda --version=12.1 -y
- 安装cuDNN
- 访问cuDNN Archive | NVIDIA Developer
- 选择8.9.7 for CUDA 12.x ,下载安装
- 安装python
访问 Download Python | Python.org 下载安装3.11
3. 获取TripoSG代码
访问 https://github.com/VAST-AI-Research/TripoSG 下载源码,或通过git命令下载:git clone https://github.com/VAST-AI/TripoSG.git
4. 创建虚拟环境
在windows终端命令行,切换到TripoSG代码包目录下
输入命令:python -m venv triposg_env ,创建一个独立环境
输入命令:triposg_env\Scripts\activate ,启动环境,之后的命令行操作都在这个环境下进行。
5. 安装PyTorch
注意:按照torch官方指引提供的下载方法安装的torch可能没有对应的cluster版本,会导致tripoSG缺失依赖包,因此需要自己指定torch版本安装,这也是为什么前面提到安装cuda12.1的原因。
在windows终端命令行输入命令安装torch:pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu121
如果安装的是其他版本torch,访问 https://data.pyg.org/whl/ 获取对应版本的cluster。
在windows终端命令行输入命令安装cluster:
pip install "I:\chromedownload\torch_cluster-1.6.3+pt23cu121-cp311-cp311-win_amd64.whl" 需要指定指定下载的cluster文件的完整路径。
6. 安装TripoSG依赖
进入TripoSG源码目录,打开requirements.txt文件,在文本后面增加三个依赖包:wadler_lindig、jaxtyping、typeguard
修改numpy版本,numpy==1.24.3
完整内容如下:
运行命令:pip install -r requirements.txt
等待安装完成。
至此TripoSG本地化搭建结束,测试:
python scripts/inference_triposg.py --image-input assets/example_data/jkghed.png --output-dir I:\models
运行成功会在目录下生成一个output指定的目录下生成glb模型文件。
初次运行没有安装推理模型的话会自动下载模型。
参数说明:
--image-input :指定3D模型参考图片
--output-dir :指定3D模型保存位置
8G显卡也能跑,运行速度很快,但是只有裸色的3D建模,没有上色,检查代码也没发现有控制上色的参数,目前还不清楚问题在哪,也有可能要等开源其他部分。
运行时如果出现错误:No module named 'triposg' ,运行命令:set PYTHONPATH=E:\TripoSG-main重新指定源码位置,PYTHONPATH后面是下载的源码包的位置。