❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦
🔄 「别让3D建模熬秃头!AI把72小时工作量压缩到一次呼吸」
大家好,我是蚝油菜花。这些数字创作的至暗时刻你是否经历过——
- 👉 为游戏角色建模连续爆肝三天,甲方却说"感觉下颌线不够二次元"
- 👉 建筑方案临时调整,传统流程让项目进度直接跳崖
- 👉 想用AI生成3D模型,结果输出像被黑洞蹂躏过的土豆…
今天要炸裂设计圈的 TripoSG ,正在重写造物法则!这支AI神笔:
- ✅ 量子雕刻术:单张照片秒出4K级网格,连发丝都带物理碰撞
- ✅ 跨次元理解:从写实照片到儿童涂鸦,AI自动脑补三维逻辑
- ✅ 平民造物主:浏览器直接编辑3D高斯粒子,MacBook也能玩转
已有动画大厂用它日更角色,独立开发者靠AI实现3A级场景——你的创意,是时候突破「三维监狱」了!
🚀 快速阅读
TripoSG 是基于大规模修正流模型的高保真3D形状合成技术。
- 核心功能:从单张图像生成高细节3D网格,支持多种输入风格
- 技术原理:采用修正流变换器架构和混合监督训练策略
TripoSG 是什么
TripoSG 是 VAST-AI-Research 团队推出的基于大规模修正流(Rectified Flow, RF)模型的高保真 3D 形状合成技术。通过大规模修正流变换器架构、混合监督训练策略以及高质量数据集,实现了从单张输入图像到高保真 3D 网格模型的生成。
TripoSG 在多个基准测试中表现出色,生成的 3D 模型具有更高的细节和更好的输入条件对齐。与传统的扩散模型相比,修正流提供了从噪声到数据之间更简洁的线性路径建模,有助于实现更稳定、高效的训练。
TripoSG 的主要功能
- 3D 内容自动化生成:直接从单张输入图像生成细节惊艳的 3D 网格模型
- 高分辨率三维重建:VAE 架构能处理更高分辨率的输入
- 高保真生成:网格具有锐利的几何特征和精细的表面细节
- 语义一致性:生成的形状准确反映输入图像的语义和外观
- 强泛化能力:能处理照片级真实图像、卡通和草图等多种输入风格
TripoSG 的技术原理
- 大规模修正流变换器:首次将基于校正流的 Transformer 架构应用于 3D 形状生成
- 混合监督训练策略:结合符号距离函数(SDF)、法线和 Eikonal 损失
- 高质量数据处理流程:包含质量评分、数据筛选、修复与增强等环节
- 高效的 VAE 架构:使用 SDF 进行几何表示,精度高于体素占用栅格
- MoE Transformer 模型:首个在 3D 领域发布的 MoE Transformer 模型
如何运行 TripoSG
1. 安装
克隆仓库并创建conda环境:
git clone https://github.com/VAST-AI-Research/TripoSG.git
cd TripoSG
conda create -n tripoSG python=3.10
conda activate tripoSG
安装依赖:
pip install torch torchvision --index-url https://download.pytorch.org/whl/{your-cuda-version}
pip install -r requirements.txt
2. 快速开始
从图像生成3D网格:
python scripts/inference_triposg.py --image-input assets/example_data/hjswed.png
资源
- 项目主页:https://yg256li.github.io/TripoSG-Page/
- GitHub 仓库:https://github.com/VAST-AI-Research/TripoSG
- HuggingFace 模型库:https://huggingface.co/VAST-AI/TripoSG
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦