计算矩阵的除法,其实就是将被除的矩阵先转化为它的逆矩阵,它的逆矩阵相当于被除的矩阵分之一,
那么矩阵的除法就相当于前面的矩阵和后面的矩阵的逆矩阵相乘的乘积。
百度经验:http://jingyan.baidu.com/article/d45ad14897fece69542b8077.html
接下来就是代码的实现过程:
/**
* 矩阵除法的函数
*
* @param args
* 参数a,b是两个浮点型(double)的二维数组,
* @return 返回值是一个浮点型二维数组(矩阵a除以b的结果)
*/
public static double[][] divide(double[][] a, double[][] b) {
double[][] result = new double[a.length][b.length];
result = multi(a, inv(b));
return result;
}
矩阵乘法multi(double[][],double[][])和矩阵的求逆inv(double[][])请参考前面的代码
测试矩阵:
a-------------------------------
1.0 2.0
3.0 4.0
b-------------------------------
7.0 8.0
6.0 5.0
--------------------------------
看输出结果:
矩阵除法
--------------------------------
0.5384615384615385 -0.4615384615384617
0.6923076923076925 -0.30769230769230793
/**
* 矩阵除数的函数
*
* @param args
* 参数a,是个浮点型(double)的二维数组,b是浮点数
* @return 返回值是一个浮点型二维数组(矩阵a除以数b的结果)
*/
public static double[][] divide(double[][] a, double b) {
int hang = a.length;
int lie = a[0].length;
double[][] result = new double[hang][lie];
for (int i = 0; i < hang; i++) {
for (int j = 0; j < lie; j++) {
result[i][j] = a[i][j] / b;
}
}
return result;
}