算法系列-----矩阵(七)-------------矩阵的除法

 计算矩阵的除法,其实就是将被除的矩阵先转化为它的逆矩阵,它的逆矩阵相当于被除的矩阵分之一,

那么矩阵的除法就相当于前面的矩阵和后面的矩阵的逆矩阵相乘的乘积。


百度经验:http://jingyan.baidu.com/article/d45ad14897fece69542b8077.html


接下来就是代码的实现过程:

	/**
	 * 矩阵除法的函数
	 * 
	 * @param args
	 *            参数a,b是两个浮点型(double)的二维数组,
	 * @return 返回值是一个浮点型二维数组(矩阵a除以b的结果)
	 */
	public static double[][] divide(double[][] a, double[][] b) {
		double[][] result = new double[a.length][b.length];
		result = multi(a, inv(b));
		return result;
	}
矩阵乘法multi(double[][],double[][])和矩阵的求逆inv(double[][])请参考前面的代码

测试矩阵:

a-------------------------------
	1.0	2.0
	3.0	4.0
b-------------------------------
	7.0	8.0
	6.0	5.0
--------------------------------

看输出结果:

矩阵除法
--------------------------------
	0.5384615384615385	-0.4615384615384617
	0.6923076923076925	-0.30769230769230793


另外需要知道除数矩阵:

	/**
	 * 矩阵除数的函数
	 * 
	 * @param args
	 *            参数a,是个浮点型(double)的二维数组,b是浮点数
	 * @return 返回值是一个浮点型二维数组(矩阵a除以数b的结果)
	 */
	public static double[][] divide(double[][] a, double b) {
		int hang = a.length;
		int lie = a[0].length;
		double[][] result = new double[hang][lie];
		for (int i = 0; i < hang; i++) {
			for (int j = 0; j < lie; j++) {
				result[i][j] = a[i][j] / b;
			}
		}
		return result;
	}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值