左眼皮跳跳

to do what I want to do , to be what I want to be !

HDU 4632 Palindrome subsequence(区间dp)

Palindrome subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/Others)
Total Submission(s): 2595    Accepted Submission(s): 1039


Problem Description
In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example, the sequence <A, B, D> is a subsequence of <A, B, C, D, E, F>.
(http://en.wikipedia.org/wiki/Subsequence)

Given a string S, your task is to find out how many different subsequence of S is palindrome. Note that for any two subsequence X = <Sx1, Sx2, ..., Sxk> and Y = <Sy1, Sy2, ..., Syk> , if there exist an integer i (1<=i<=k) such that xi != yi, the subsequence X and Y should be consider different even if Sxi = Syi. Also two subsequences with different length should be considered different.
 

Input
The first line contains only one integer T (T<=50), which is the number of test cases. Each test case contains a string S, the length of S is not greater than 1000 and only contains lowercase letters.
 

Output
For each test case, output the case number first, then output the number of different subsequence of the given string, the answer should be module 10007.
 

Sample Input
4 a aaaaa goodafternooneveryone welcometoooxxourproblems
 

Sample Output
Case 1: 1 Case 2: 31 Case 3: 421 Case 4: 960
 

Source
 




/*
题意:问一个字符串的会问序列有多少个
    dp[i][j]=(dp[i][j-1]+dp[i+1][j]-dp[i+1][j-1]);
    if(c[i]==c[j]) 那么加上中间的dp[i+1][j-1],因为可以和i,j形成新的
    还要加上  1  (i 和  j 形成字符串)


*/

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define bug printf("hihi\n")

#define eps 1e-8
typedef __int64 ll;

using namespace std;

#define mod 10007
#define INF 0x3f3f3f3f
#define N 1005

int dp[N][N];
int len;
char c[N];

int main()
{
   int i,j,t,ca=0;
   scanf("%d",&t);
   while(t--)
   {
       scanf("%s",c);
       len=strlen(c);
       memset(dp,0,sizeof(dp));
       for(i=0;i<len;i++)
          dp[i][i]=1;

       for(i=len-1;i>=0;i--)
         for(j=i+1;j<len;j++)
         {
            dp[i][j]=(dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1]+mod)%mod;
            if(c[i]==c[j])
                dp[i][j]=(dp[i][j]+dp[i+1][j-1]+1+mod)%mod;
         }
         printf("Case %d: %d\n",++ca,(dp[0][len-1]+mod)%mod);
   }
   return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014737310/article/details/46830393
个人分类: DP 动态规划
上一篇HDU 3280 Equal Sum Partitions(二分查找)
下一篇HDU 5089 Assignment(rmq+二分 或 单调队列)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭