## 左眼皮跳跳

to do what I want to do , to be what I want to be !

# Palindrome subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/Others)
Total Submission(s): 2595    Accepted Submission(s): 1039

Problem Description
In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example, the sequence <A, B, D> is a subsequence of <A, B, C, D, E, F>.
(http://en.wikipedia.org/wiki/Subsequence)

Given a string S, your task is to find out how many different subsequence of S is palindrome. Note that for any two subsequence X = <Sx1, Sx2, ..., Sxk> and Y = <Sy1, Sy2, ..., Syk> , if there exist an integer i (1<=i<=k) such that xi != yi, the subsequence X and Y should be consider different even if Sxi = Syi. Also two subsequences with different length should be considered different.

Input
The first line contains only one integer T (T<=50), which is the number of test cases. Each test case contains a string S, the length of S is not greater than 1000 and only contains lowercase letters.

Output
For each test case, output the case number first, then output the number of different subsequence of the given string, the answer should be module 10007.

Sample Input
4 a aaaaa goodafternooneveryone welcometoooxxourproblems

Sample Output
Case 1: 1 Case 2: 31 Case 3: 421 Case 4: 960

Source

/*

dp[i][j]=(dp[i][j-1]+dp[i+1][j]-dp[i+1][j-1]);
if(c[i]==c[j]) 那么加上中间的dp[i+1][j-1],因为可以和i,j形成新的
还要加上  1  （i 和  j 形成字符串)

*/

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define bug printf("hihi\n")

#define eps 1e-8
typedef __int64 ll;

using namespace std;

#define mod 10007
#define INF 0x3f3f3f3f
#define N 1005

int dp[N][N];
int len;
char c[N];

int main()
{
int i,j,t,ca=0;
scanf("%d",&t);
while(t--)
{
scanf("%s",c);
len=strlen(c);
memset(dp,0,sizeof(dp));
for(i=0;i<len;i++)
dp[i][i]=1;

for(i=len-1;i>=0;i--)
for(j=i+1;j<len;j++)
{
dp[i][j]=(dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1]+mod)%mod;
if(c[i]==c[j])
dp[i][j]=(dp[i][j]+dp[i+1][j-1]+1+mod)%mod;
}
printf("Case %d: %d\n",++ca,(dp[0][len-1]+mod)%mod);
}
return 0;
}


#### HDU4632 Palindrome subsequence（区间DP）

2016-02-01 20:26:25

#### HDU 4632 Palindrome subsequence(区间DP）

2018-07-13 09:05:32

#### HDU - 4632 Palindrome subsequence (区间DP)

2018-05-14 09:32:51

#### HDU 4632 Palindrome subsequence(区间DP)

2016-03-04 08:14:03

#### Palindrome subsequence HDU - 4632 （区间dp）

2018-05-17 11:17:52

#### HDU 4632 Palindrome subsequence（区间DP）

2017-11-01 21:53:10

#### HDU 4632 - Palindrome subsequence(区间DP)

2015-03-31 20:06:57

#### HDU 4632 Palindrome subsequence (区间DP)

2015-04-01 19:57:34

#### hdu 4632 Palindrome subsequence

2014-05-01 21:24:15

#### hdu 4632 Palindrome subsequence

2013-09-26 11:50:48