唐宇迪-机器学习-课程笔记
目前笔记内容为 38课时-41课时内容(未完成)。
线性回归
- 非常重要
- 基本–必须掌握的知识
- 公式参考
例子:
工资 | 年龄 | 额度 |
---|---|---|
4000 | 25 | 20000 |
8000 | 30 | 70000 |
5000 | 28 | 35000 |
7500 | 33 | 50000 |
12000 | 40 | 85000 |
两个特征: 工资和年龄
- 目标: * 预测银行会贷款给我多少钱(标签)
考虑:工资和年龄都会影响最终银行贷款结果,那么它们各自有多大影响?(参数)
通俗解释:
- X1,X2 就是我们的两个特征(年龄,工资)Y是银行最终借多少钱
- 找到最合适的一条线(想象一个高纬度)来最好的拟合我们的数据点
[外链图片转存失败(img-EN52T30t-1567350177024)(https://i.loli.net/2019/09/01/StwPVIu2qY1xQcr.png)][外链图片转存失败(img-GWVEX6yn-1567350177028)(https://i.loli.net/2019/09/01/StwPVIu2qY1xQcr.png)]
拟合平面公式: θ 0 \theta_{0} θ0 是偏置项
h θ ( x ) = θ 0 + θ 1 + θ 2 h_{\theta}(x) = \theta_0+\theta_1+\theta_{2} hθ(x)=θ0+θ1+θ2
整合:
h θ ( x ) = ∑ i = 0 n θ i x i = θ T x h_{\theta}(x)= \sum_{i=0}^n\theta_{i} x_i=\theta^Tx hθ(x)=i=0∑nθixi=θTx
-
$ \sum_{i=0}^n \theta_ix_i$ 表示求和
-
误差
真实值和预测值之间肯定是要存在差异的(用 ε \varepsilon ε 来表示误差)
对于每个样本: y ( i ) = θ T x ( i ) + ε ( i ) y^{(i)} = \theta^Tx^{(i)}+\varepsilon^{(i)} y(i)=θTx(i)+ε(i)
- y ( i ) y^{(i)} y(i):表示真实值
- θ T x ( i ) \theta^Tx^{(i)} θTx(i):表示预测值
误差
-
误差 ε ( i ) \varepsilon^{(i)} ε(i) 是独立并具有相同分布,并服从均值为0方差为 θ 2 \theta^2 θ2 的高斯分布
-
独立:张三和李四一起来贷款,他俩没关系
-
同分布:他两都来得是我们假定的这家银行
-
高斯分布:银行可能会多给,也可能少给,但是绝大多数情况这个浮动不会太大,极小情况浮动比较大,符合正常情况
-
推导:
-
预测值与误差:$y{(i)}=\thetaTx{(i)}+\varepsilon{(i)} $ (1)
-
由于误差服从高斯分布: p ( ε ( i ) ) = 1 2 π σ exp ( − ( ε ( i ) ) 2 2 σ 2 ) p(\varepsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(\varepsilon^{(i)})^2}{2\sigma^2}) p(ε(i))=2πσ1exp(−2σ2(ε(i))2) (2)
-
将(1)式代入(2)式: p ( y ( i ) ∣ x ( i ) ; θ ) = 1 2 π σ exp ( − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 ) p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2}) p(y(i)∣x(i);θ)=2πσ1exp(−2σ2(y(i)−θTx(i))2) (3)
-
-
似然函数:(根据样本估计参数值)
L ( θ ) = ∏ i = 1 m p ( y ( i ) ∣ x ( i ) ; θ ) = ∏ i = 1 m 1 2 π σ exp ( − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 ) L(\theta) = \prod_{i=1}^mp(y^{(i)}|x^{(i)};\theta) = \prod_{i=1}^m\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2}) L(θ)=i=1∏mp(y(i)∣x(i);θ)=i=1∏m2πσ1exp(−2σ2(y(i)−θTx(i))2)
-
解释:什么样的参数跟我们的数据组合后恰好是真实值
-
对数似然:
log L ( θ ) = log ∏ i = 1 m 1 2 π σ exp ( − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 ) \log L(\theta) = \log \prod_{i=1}^{m} \frac{1}{\sqrt {2\pi}\sigma } \exp(- \frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2}) logL(θ)=logi=1∏m2πσ1exp(−2σ2(y(i)−θTx(i))2)
- 解释:乘法难解,加法容易,对数里面乘法转换成加法