1 、实现欧氏距离
import numpy as np
import math
a = np.mat([1,2,3])
b = np.mat([4,7,5])
ed = np.sqrt((a-b) * (a-b).T) ##实现欧氏距离
2、实现曼哈顿距离
mht = np.sum(np.abs(a-b)) ## 实现曼哈顿距离
3、实现切比雪夫距离
chbsh = np.max(np.abs(a-b)) ##实现切比雪夫距离
4 、实现夹角余弦
cosab = np.dot(a, b.T)/(np.linalg.norm(a) * np.linalg.norm(b)) #dot 两个向量的点乘,norm() 求向量的范数
5、实现汉明距离
汉明距离:两个等长的字符串s1 与 s2 之间的汉明距离为 s1(s2) 变成s2(s1) 所需要的最小替换次数。eg: ‘abc’ 与’abb’ 汉明距离为1
python实现:
#实现汉明距离
a = np.mat([1,2,3,4,5])
b = np.mat([1,2,3,3,4])
smstr = np.nonzero(a - b)
hmng = np.shape(smstr[0])[0]
6、杰卡德相似系数与杰卡德距离
杰卡德相似系数:A、B两个集合的交集在并集中所点的比例
杰卡德距离:与杰卡德相似系数相反, = 1 - 杰卡德相似系数
python 实现:
from numpy import *
import scipy.spatial.distance as dist
#实现杰卡德距离
matV = np.mat([[1,2,3,4,5],[1,2,3,3,4]])
jcrd = dist.pdist(matV,'jaccard') ##