交易和赌博有什么区别?

交易和赌博之间的差异早已不如以前那么明显了。很多人认为交易者就是赌徒,当他们觉得能像在拉斯维加斯的轮盘赌一样,对外汇市场交易也抱有很大期待时,他们真正更像赌徒。互联网让在线交易变得非常普遍,不管你来自什么背景,即便不懂任何金融知识,也可以接触并进行交易。很多交易者有一种心理想法——“要么赚得盆满钵满,要么亏得一无所有”,他们以投机的思维来到金融市场,也模糊了交易和赌博的界限。而对于另一些依赖策略、建立交易系统以及遵循投资原则,且认真执行技术和基本面分析的交易者来说,交易和赌博完全是两件不同的事。


谨记杰西·利弗莫尔的一句话吧:“交易和赌博的区别在于,前者是对行情涨跌的押注,后者则是等待市场不可避免的升和跌,在市场中赌博,迟早是要破产的。”

01、交易与赌博的本质

2e32acbb59d6dac54330461867302930.jpeg

投资与投机、交易之间的界限,其实并不那么清晰。有些人认为自己在投资P2P、私募、区块链等项目,但实际上他们只是盲目跟风,缺乏对项目资金去向和真实运作情况的了解,因此更像是投机而非投资。有些人认为自己在投机,希望快速获取收益后离场,但实际上他们只是盲目追求短期利润,缺乏对市场趋势和风险控制的认知,因此更像是赌博而非投机。


另外,有些人每天沉浸在期货、股票、外汇市场中,认为市场就是提款机。然而,他们只是盲目交易,缺乏对市场规律和自身交易行为的了解,因此更像是赌博而非交易。在21点的牌桌上,有些人精确记忆并计算大小牌,配合严格的资金管理,耐心等待机会在投注。他们通过精心计划和策略来参与游戏,实际是“交易”而不是“赌博”。


决定你在做的事情是交易还是赌博,并不取决于你参与的事项活动本身,而是取决于你的行为特征。你是如何参与进行活动的,这才是关键所在。基金买卖、期货外汇市场买卖、打牌等行为,并非一定是投资或交易。


“交易”是从纯属随机的事情中创造收益的游戏,而“赌博”则是围绕概率进行的、以赢取奖金为目的的数字游戏。既然交易是围绕概率进行的,那么我们需要通过统计样本来构建盈利模型。这个模型需要足够多的样本才能得出客观明确的盈利结果。通过这个模型,我们可以挑选出满足模型要求的因子,并加以交易,从而持续地获得盈利。只要你的行为符合上述方式,无论是买卖期货外汇还是打牌,都是交易而不是赌博。

02、将不确定因素变为大概率事件

de9ca287d7d4951f8d5f817aba8658c9.jpeg

在打牌时,手上的牌是不确定的,但规则是明确的。随着牌堆的减少,出牌和牌型的机会就会发生变化。聪明地根据牌势调整出牌策略,可以增加赢的概率,使之更有利于我们。长期实践,再配合合理的资金管理,看似普通的游戏就会逐渐演变为专业的"交易"。


在交易中,短期看来,行情的发展是不确定的。但若我们持续观察,当特定的市场形态出现(符合统计学上的盈利模型),行情的后势发展便并非随机,而是概率引导的。满足高胜率、盈亏比合理(忽略手续费)的行情,我们应持续交易,避免连续亏损侵蚀本金。如此长期下来,我们必将取得盈利。

03、交易可以赚钱的逻辑 

b740bc7b0069267bf111f8b84447690c.jpeg

其实,从赌场的规则中,我们也可以反推交易获胜的原因。众所周知,赌场是赚钱的,因为赌场可以设定游戏规则,这个规则将赌场的胜率提高到50%以上。你参与赌博就得按照赌场的规则来,这个规则长期来看对你不利。所以赌场不怕你赢钱,就怕你不来赌,只要你来得足够多,结果大概率是盈利的。


赌场设置了单笔的最高投注金额,这样就限定了赌场单笔的最大亏损。因为赌场的钱不是无限的,客户赢钱也是要给的。如果不设定最大投注额,万一哪天某个大赌客去赌场下一次重注,赌场老板说不定就要赌上全部身家来开牌了。当然这种情况不会发生,因为赌场老板有长远的眼光。所以,赌场的长期正收益和足够的次数使得开赌场成为了稳赚不赔的买卖。


在交易中,我们需要制定自己的交易规则,这个规则必须是长期正收益、对自己有利的规则。正收益盈利模型就是这样的规则。一次交易不能确保一定获利,但交易是概率游戏,只要次数足够多,在正收益的规则下就一定获利。而赌场是按照别人的规则来玩,交易是按照自己的规则来玩。只要你能严格执行自己的盈利策略,你就像开赌场的庄家,其他散户则是参与游戏的玩家。


当你真正了解了概率和不确定性时,你就会明白交易与赌场的本质区别。交易是长期正收益的,而赌场是长期负收益的;交易是依靠方法靠概率取胜的,而赌场则是依靠运气取胜的;交易是自己指定规则从而占据优势的,而赌场则是按照他人规则占据劣势的。虽然单次交易的结果是不确定的,但连续多次的结果是可以预见的。而无论多少次,赌场的结果都是不可预知的。


因此,我们的交易是一个在掌握了既定方法后,将规则修改成对自己长期有利的一种概率游戏。我们可以实现长期获利,而绝非等同于赌博。但要明白,做交易必须学会面对亏损与面对不确定性。虽然长期来看是正收益的,但每一次的交易结果是否赚钱是不确定的。因此,合理的资金管理在交易中也同样重要。当然最重要的是要先有一个可以使你占据长期概率优势的交易模型。

### UCT与UCB算法的区别 #### 定义差异 UCT(Upper Confidence bounds applied to Trees)是一种应用于树形结构中的决策方法,特别适用于蒙特卡洛树搜索(MCTS)[^1]。而UCB(Upper Confidence Bound)则更广泛地指代一类利用置信区间来平衡探索与开发之间关系的方法,在单层或多层节点的选择过程中均能发挥作用[^2]。 #### 应用场景对比 - **UCT的应用** 对于复杂的游戏环境或是存在大量可能性的状态空间来说,采用MCTS框架下的UCT能够有效地缩小搜索范围并找到较优解路径。例如在围棋、国际象棋等人机对抗游戏中被广泛应用[^3]。 - **UCB的应用** 当面对的是简单的多臂赌博机问题或者其他不需要构建深层级子节点的情况时,则可以直接运用UCB来进行最优选项挑选工作。这类情况通常涉及较少状态转换或动作序列长度有限的问题领域内[^4]。 ```python def ucb_selection(node): best_score = float('-inf') selected_node = None for child in node.children: score = child.total_reward / child.visits + \ math.sqrt(2 * math.log(node.visits) / child.visits) if score > best_score: best_score = score selected_node = child return selected_node class Node(object): def __init__(self, parent=None): self.parent = parent self.children = [] self.visits = 0 self.total_reward = 0 def add_child(self, child_node): self.children.append(child_node) root = Node() child_1 = Node(parent=root) child_2 = Node(parent=root) root.add_child(child_1) root.add_child(child_2) selected_child = ucb_selection(root) print(f'Selected Child: {id(selected_child)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值