如何使用模拟退火算法MATLAB玩转数独魔方?

本文介绍了如何使用模拟退火算法在MATLAB中生成满足数独规则的九宫格矩阵。通过建立目标函数,确保每一行、每一列、每个宫格的数字和为45,并详细描述了新解的产生策略,即每次仅改变一行中的两个数字位置。虽然最终结果的各行各列和满足条件,但可能存在同一列中相同数字的问题,作者欢迎读者分享改进算法。
摘要由CSDN通过智能技术生成

数独规则如下:

每一行、每一列、每一个粗线宫内的数字均含1-9,不重复。

影响数独难度的因素很多,包括最高难度的技巧、各种技巧所用次数、是否有隐藏及隐藏的深度及广度的技巧组合、当前盘面可逻辑推导出的出数个数等等。对于玩家而言,了解的技巧数量、熟练程度、观察力自然也影响对一道题的难度判断。市面上数独刊物良莠不齐,在书籍、报纸、杂志中所列的难度或者大众解题时间纯属参考,常有难度错置的情况出现,所以不必特别在意。网络上有很多数独难度的分析软件,比较著名的是 Nicolas Juillerat 开发的 Sudoku Explainer 和 Bernhard Hobiger 开发的 Hodoku,它们都是免费的软件。因为每种软件的都有不同的解题策略,所以也只能作为难度的大致界定,无法真正的解析出难度的内涵。

而笔者今天要讲的,是抛开题目,只根据规则,直接用MATLAB运行出一个数独九宫格魔方来。

01 问题的重述

假如有这样一个初始九宫格矩阵,要将它还原成满足数独规则的形式,应该怎么办呢?

S =
     9     6     7     5     3     1     4     8     2
     9     7     1     5     4     2     6     3     8
     6     5     4     3     1     9     8     2     7
     7     6     5     9     3     1     4    
以下是使用模拟退火算法解决数独问题的 Python 代码示例: ```python import random import math # 定义数独问题 sudoku = [ [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0] ] # 随机生成数独初始状态 for i in range(9): for j in range(9): if random.randint(0, 1): sudoku[i][j] = random.randint(1, 9) # 计算数独的初始解的适应度 def calc_fitness(sudoku): fitness = 0 for i in range(9): for j in range(9): # 计算行、列、九宫格内的重复数字数量 row_count = sum([sudoku[i][k] == sudoku[i][j] for k in range(9) if k != j]) col_count = sum([sudoku[k][j] == sudoku[i][j] for k in range(9) if k != i]) box_count = sum([ sudoku[m][n] == sudoku[i][j] for m in range(i//3*3, i//3*3+3) for n in range(j//3*3, j//3*3+3) if m != i or n != j ]) # 将重复数字数量作为适应度 fitness += row_count + col_count + box_count return fitness # 模拟退火算法求解数独问题 def simulated_annealing(sudoku): T = 1.0 # 初始温度 T_min = 0.01 # 最小温度 alpha = 0.99 # 降温系数 while T > T_min: for i in range(100): # 随机选择一个位置 row = random.randint(0, 8) col = random.randint(0, 8) # 保存当前位置的值 old_value = sudoku[row][col] # 随机生成一个新值 new_value = random.randint(1, 9) while new_value == old_value: # 新值与旧值相同时重新生成 new_value = random.randint(1, 9) # 将新值赋给当前位置,并计算适应度差 sudoku[row][col] = new_value delta = calc_fitness(sudoku) - calc_fitness(sudoku) # 如果新解更优,接受新解 if delta < 0: old_value = new_value # 否则以一定概率接受新解 else: p = math.exp(-delta / T) if random.random() < p: old_value = new_value else: sudoku[row][col] = old_value # 恢复当前位置的值 T *= alpha # 降温 return sudoku # 输出结果 result = simulated_annealing(sudoku) print(result) ``` 该代码使用随机生成的数独问题作为初始状态,通过模拟退火算法搜索最优解。其中,`calc_fitness` 函数计算数独解的适应度,`simulated_annealing` 函数实现模拟退火算法,最终输出结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值