以下是使用模拟退火算法解决数独问题的 Python 代码示例:
```python
import random
import math
# 定义数独问题
sudoku = [
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]
]
# 随机生成数独初始状态
for i in range(9):
for j in range(9):
if random.randint(0, 1):
sudoku[i][j] = random.randint(1, 9)
# 计算数独的初始解的适应度
def calc_fitness(sudoku):
fitness = 0
for i in range(9):
for j in range(9):
# 计算行、列、九宫格内的重复数字数量
row_count = sum([sudoku[i][k] == sudoku[i][j] for k in range(9) if k != j])
col_count = sum([sudoku[k][j] == sudoku[i][j] for k in range(9) if k != i])
box_count = sum([
sudoku[m][n] == sudoku[i][j] for m in range(i//3*3, i//3*3+3) for n in range(j//3*3, j//3*3+3)
if m != i or n != j
])
# 将重复数字数量作为适应度
fitness += row_count + col_count + box_count
return fitness
# 模拟退火算法求解数独问题
def simulated_annealing(sudoku):
T = 1.0 # 初始温度
T_min = 0.01 # 最小温度
alpha = 0.99 # 降温系数
while T > T_min:
for i in range(100):
# 随机选择一个位置
row = random.randint(0, 8)
col = random.randint(0, 8)
# 保存当前位置的值
old_value = sudoku[row][col]
# 随机生成一个新值
new_value = random.randint(1, 9)
while new_value == old_value: # 新值与旧值相同时重新生成
new_value = random.randint(1, 9)
# 将新值赋给当前位置,并计算适应度差
sudoku[row][col] = new_value
delta = calc_fitness(sudoku) - calc_fitness(sudoku)
# 如果新解更优,接受新解
if delta < 0:
old_value = new_value
# 否则以一定概率接受新解
else:
p = math.exp(-delta / T)
if random.random() < p:
old_value = new_value
else:
sudoku[row][col] = old_value # 恢复当前位置的值
T *= alpha # 降温
return sudoku
# 输出结果
result = simulated_annealing(sudoku)
print(result)
```
该代码使用随机生成的数独问题作为初始状态,通过模拟退火算法搜索最优解。其中,`calc_fitness` 函数计算数独解的适应度,`simulated_annealing` 函数实现模拟退火算法,最终输出结果。