alternating minmize算法

alternating minmize算法,中文称作交替最小法。

算法思想:

假定有目标函数f(U,V),每次仅把其中的一个变量视作可变量进行优化,其他的变量视作常量,对所有的变量交替进行此优化操作。

假定初始有(U,V)=(U0,V0)

U1 = argmin_U{f(U,V0)}

得到(U1, V0)--->f(U1,V0)

V1 = argmin_V{f(U1,V)}

得到(U1,V1)--->f(U1,V1)

则必有f(U0,V0)>=f(U1,V0)>=f(U1,V1)

通过不停的迭代可以实现最小化目标函数。

算法分析

当目标函数是凸函数或者是光滑的函数时,altmin算法必然能得到全局最优解。

值得注意的是,当目标函数非凸时,经验表明altmin算法也能达到非常好的效果。altmin算法原理简单,经验效果好,不失为实践时用来解决非凸问题的一个方法。

另外有趣的是,实际上altmin算法与常用的em算法有联系,可以说em算法是am算法的一个特例!


参考文件



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值