CUDA笔记一编程模型

一、CUDA 编程模型

2009-10-21 

CUDA的代码分成两部分,一部分在host(CPU)上运行,是普通的C代码;另一部分在device(GPU)上运行,是并行代码,称为kernel,由nvcc进行编译。

       Kernel产生的所有线程成为Grid。在并行部分结束后,程序回到串行部分即到host上运行。

       在CUDA中,host和device有不同的内存空间。所以在device上执行kernel时,程序员需要把host memory上的数据传送到分配的device memory上。在device执行完以后,需要把结果从device传送回host,并释放device memory。CUDA runtime system提供了API给程序员做这些事情。

Float *Md;

Int size=Width*Width*sizeof(float);

API:

cudaMalloc((void**)&Md, size)——从host code调用,为device在global memory分配内存空间。第一个参数是指向分配对象的地址,第二个参数是分配大小;

cudaFree(Md)——释放device Global Memory。

cudaMemcpy(Md, M, size, dudaMemcpyHostToDevice)——内存数据传输。四个参数分别为:指向目的数据的指针,指向源(要copy的)数据指针,要copy出的数据字节数,传输方式(host to host, host to device, device to host, device to device)

 

内核部分

__global__说明这个函数是一个kernel,host function可以调用这个函数产生线程

threadIdx.x线程index

 

一个kernel被调用时,以并行线程的grid形式执行。一个kernel创建一个grid。Grid中的线程被组织成两个层次。在最顶层,每个grid包含一个或多个thread block。Grid中的所有block有相同数目的线程。每个thread block有一个唯一的二维坐标,由CUDA的特定关键字blockIdx.x和blockIdx.y指定。所有的thread block必须以相同的方式组织,并有相同数目的thread。

 

Thread block:包含相互之间能够协作的线程,这些线程通过同步或者在低延迟的shared memory之间共享数据进行协作。不同block里的线程不能协作。每个thread block组织成三位的线程数组,最大线程数目为512。Block中的线程坐标是唯一的,通过三个线程id指定:threadIdx.x, threadIdx.y, threadIdx.z。不是所有的应用程序会使用thread block的三个维度。

当host code调用一个kernel时,通过参数传递来设置grid和thread block的维度。如下:

// Setup the execution configuration

dim3 dimBlock(WIDTH, WIDTH);

dim3 dimGrid(1, 1);

// Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

       以上是摘自David Kirk和Wen-mei Hwu的课程,讲的比较清楚。感觉CUDA编程一个比较自由的编程方式,由于是在C之上的扩展,加了一些关键字,比较容易,编程方式让人很好接受。一方面给了程序员很大的发挥空间,thread, thread block等都可以自由配置,另一方面也给程序员提出了挑战,这么大的空间中怎样编程以取得好的性能。

 

 

一个简单的矩阵乘程序

#include<stdio.h>

#include<stdlib.h>

#include<cuda.h>

//内核程序

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

       //2D Thread ID

       int tx=threadIdx.x;

       int ty=threadIdx.y;

       printf("I'm thread: %d %d\n",tx,ty);

        //Pvalue stores the Pd element that is computed by the thread

       float Pvalue=0;

 

       for(int k=0; k<Width; k++)

       {

                float Mdelement=Md[ty*Width+k];

                float Ndelement=Nd[k*Width+tx];

                Pvalue+=Mdelement*Ndelement;

                printf("%f  %f   %f\n",Mdelement,Ndelement,Pvalue);

       }

 

        //Write the matrix to device memory each thread writes one element

        Pd[ty*Width+tx]=Pvalue;

}

 

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

        int size=Width*Width*sizeof(float);

        float *Md,*Nd,*Pd;

 

        dim3 dimBlock(Width,Width);

        dim3 dimGrid(1,1);

        //Load M and N to device memory

        cudaMalloc((void **)&Md,size);

        cudaMemcpy(Md,M,size,cudaMemcpyHostToDevice);

        cudaMalloc((void **)&Nd,size);

        cudaMemcpy(Nd,N,size,cudaMemcpyHostToDevice);

 

        //for(int i=0;i<3;i++)printf("%d ",Md[i]);

        //Allocate P on the device

        cudaMalloc((void**)&Pd,size);

 

        //Kernel invocation code

        MatrixMulKernel<<<dimGrid,dimBlock>>>(Md,Nd,Pd,Width);

 

        //Read P from the device

        cudaMemcpy(P,Pd,size,cudaMemcpyDeviceToHost);

        //Free device matrices

        cudaFree(Md);cudaFree(Nd);cudaFree(Pd);

}

 

int main(void)

{

  // Allocate and initialize the matrices M,N,P

  // I/O to read the input matrices M and N

  //int size=Width*Width*sizeof(float);

        float *M,*N,*P;

        int Width=4;

        //int size=Width*Width*sizeof(float);

        int i=0;

 

        M=(float *)malloc(sizeof(float)*Width*Width);

        N=(float *)malloc(sizeof(float)*Width*Width);

        P=(float *)malloc(sizeof(float)*Width*Width);

 

        for(i=0;i<Width*Width;i++)

                M[i]=(float)i;

        for(i=0;i<Width*Width;i++)

                N[i]=(float)i;

 

//      for(i=0;i<Width*Width;i++)

//              printf("%3f  ",N[i]);

 

 // M*N on the device

        MatrixMulOnDevice(M,N,P,Width);

 

        for(i=0;i<Width*Width;i++)

        {

                if(i%Width==0)printf("\n");

                printf("%3f   ",P[i]);

        }

        printf("\n");

  // I/O to write the output matrix P

  // Free matrices M, N, P

        free(M);free(N);free(P);

 

  return 0;

                                                                    

 

运行命令:

nvcc -deviceemu matrixmul.cu -o matrixmul

注意: -deviceemu在此处是必须的,因为在device中调用了printf,这属于device调用了host function

下一步:理解计算是怎样并行的?

普通CPU程序和GPU程序的性能比怎样?用时间衡量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值