验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。
例如:
1^3=1
2^3=3+5
3^3=7+9+11
4^3=13+15+17+19
输入:6
输出: 31+33+35+37+39+41
【代码】
- #include<iostream>
- #include<stdio.h>
- using namespace std;
- int main()
- {
- int m,n;
- while(cin>>m)
- {
- n = m*m-m+1; //计算第一个奇数,m*m*m=n+(n+2)+...n+2*(m+1)
-
- for(int i=0; i<m-1; i++)
- {
- cout<<n+2*i<<"+"; //第一段:前m-1个数
- }
- cout<<n+2*(m-1)<<endl; //第二段:最后一个数
- }
- return 0;
- }