尼科彻斯定理

验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。

例如:

1^3=1 

2^3=3+5 

3^3=7+9+11 

4^3=13+15+17+19 

 

输入:6

输出: 31+33+35+37+39+41


【代码】

  1. #include<iostream>
  2. #include<stdio.h>
  3. using namespace std;
  4.  
  5. int main()
  6. {
  7.     int m,n;
  8.    
  9.     while(cin>>m)
  10.     {
  11.         n = m*m-m+1;              //计算第一个奇数,m*m*m=n+(n+2)+...n+2*(m+1)

  12.         for(int i=0; i<m-1; i++)
  13.         {
  14.            cout<<n+2*i<<"+";      //第一段:前m-1个数
  15.         }
  16.        
  17.         cout<<n+2*(m-1)<<endl;    //第二段:最后一个数
  18.       
  19.        }
  20.   return 0;
  21. }
  22.  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

屠变恶龙之人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值