凑成邮票总值的最少张

题目描述

    有若干张邮票,要求从中选取最少的邮票张数凑成一个给定的总值。     如,有1分,3分,3分,3分,4分五张邮票,要求凑成10分,则使用3张邮票:3分、3分、4分即可。 
输入描述:
    有多组数据,对于每组数据,首先是要求凑成的邮票总值M,M<100。然后是一个数N,N〈20,表示有N张邮票。接下来是N个正整数,分别表示这N张邮票的面值,且以升序排列。
输出描述:
      对于每组数据,能够凑成总值M的最少邮票张数。若无解,输出0。
输入例子:
10
5
1 3 3 3 4
输出例子:
3
【代码】 //背包问题

  1. #include<algorithm>
  2. #define min(a,b) a<b?a:b
  3. using namespace std;

  4. int main()
  5. {  
  6.   int dp[1000], a[1000];
  7.   int sum, n;

  8.   while(cin>>sum>>n)   
  9.   {
  10.     for(int i=0; i<1000; i++)
  11.          dp[i] = 99999999;
  12.  
  13.     for(int i=0; i<n; i++)
  14.          cin>>a[i];

  15.       dp[0]=0;
  16.      for(int i=0; i<n; i++)
  17.        for(int j=sum; j>=a[i]; j--)
  18.             dp[j] = min(dp[j], dp[j-a[i]] + 1);
  19.  
  20.      if(dp[sum] >= 1000)
  21.         cout<<0<<endl;
  22.      else
  23.       cout<<dp[sum]<<endl;
  24.  
  25.      }
  26.  return 0;
  27. }






DESCRIPTION: 1.Analyze Problem A : sorted stamps array A={ai} ai: one stamp element in array n: array size, that is number of elements in array r: desired value of stamps F(n,r):expected result, minimum number of stamps for a given value r from n size array. S: selected stamps array S={si} 2.Choose Algorithm a.Greedy algorithm seems to be a good choice, try to solve it in O(n), i try divide array into subarry B={bi}, r should larger than every elemnt in B that is r>bi and suppose bk is the smallest element in B, so that r= bk%r, f(i,r)=(bk/r), F(n,r)=∑f(i,r). The main idea is to choose the last element who larger than desired value each time. However,it can not give us optimal solution in some condition, like A={8,5,4,1}, if r=10, this algoritm will give a solution F(n,r)=3, S={8,1,1},but the optimal solution should be F(n,r)=2, S={5,5}. b.Full search so the straight forwards algorithm is to search for every solution in A for desired value directly.However, it will always take O(n!) to go through every combination. c.Dynamic programming, at last, I decide to choose dynamic programming. analyze optimal structure, suppose in A={ai}, for a specific stamp ak,there will be two cases it is choosen so that f(i,r)=1+f(i,r-ak) , 1<=i<=k, r>=ak it is not valid so that f(i,r)=f(i-1,r) 3.Design Dynamic programming optimal structure: Compute-opt(r)= 1 + Compute-opt(r-ai) value: Compute-opt(r) = ∞ (r < 0) Compute-opt(r) = 0 (r = 0) Compute-opt(r) = 1+{Compute-opt(r-ai)} ( 1=<i<=n, r>ai>0 ) Complexity :O(nr) Memory cost:O(n+r) Compute in a bottom-up style to recursive every desired value and array. store value of Compute-opt in memory for future use, so that we can easily get value from those memory in future recursive call, and avoid compute again, that is if the array is not change, you can easily fetch result any desired value j (j < r, r is the value using for compute ). 2.For User totally, I design a small command line for this machine list below 1.Manual Operation 2.Self Auto Testing 3.Check Results q.Quit Manual Operation: when select this machine will turn to be manual mode, ask person to input stamps and desired value; Self Auto Testing:when select this machine will turn to be auto mode, show the test case already design in code after that machine will quit automatically. Check Results: only be visiable in Manual Operation, people can check desired value for the array input before, the desired value should be no more than first time input. Quit, clean all the memory and quit system.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

屠变恶龙之人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值