1.题目描述:点击打开链接
2.解题思路:本题是一道经典的题目,巧妙的将LCS问题转化为LIS问题。这种题目的一个特定就是其中一个序列的所有元素均不相同。首先,我们可以对A数组重新编号为{1,2,3,...n},接下来对于B数组的每个元素,替换为A中那个元素的编号,若没有在A中出现,那么直接置0,这样,B数组也变为一个由编号构成的数组,此时我们发现,A数组是一个自然序列,那么只要在B中找到最长上升的子序列,就是和A的最长公共子序列!这就是本题的巧妙之处!而LIS问题有O(N*logN)的解法,因此可以通过本题的数据规模。
3.代码:
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<algorithm>
#include<string>
#include<sstream>
#include<set>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
typedef pair<long long, long long> PL;
#define me(s) memset(s,0,sizeof(s))
#define For(i,n) for(int i=0;i<(n);i++)
const int N = 250 * 250;
const int INF = 1000000000;
int S[N], g[N], d[N];
int num[N];
int main()
{
//freopen("t.txt", "r", stdin);
int T;
scanf("%d", &T);
for (int rnd = 1; rnd <= T; rnd++)
{
int n, p, q, x;
scanf("%d%d%d", &n, &p, &q);
me(num);
for (int i = 1; i <= p + 1; i++)
{
scanf("%d", &x); num[x] = i;//重新编号为1,2,3,...n
}
int cnt = 0;
for (int i = 0; i < q + 1; i++)
{
scanf("%d", &x);
if (num[x])S[cnt++] = num[x];//将B数组的元素也修改为编号
}
fill(g + 1, g + cnt + 1, INF);//以下部分即为求解LIS问题的算法
int ans = 0;
For(i, cnt)
{
int k = lower_bound(g + 1, g + cnt + 1, S[i]) - g;
d[i] = k;
g[k] = S[i];
ans = max(ans, d[i]);
}
printf("Case %d: %d\n", rnd, ans);
}
return 0;
}