1.题目描述:点击打开链接
2.解题思路:本题可以转化为线段树的单点更新问题。根据题意描述,我们可以维护区间[1,h]上的最大宽度。令结点1是区间[1,h],那么如果tr[1].len<x则说明无解,否则,可以用线段树来更新,每次优先考虑左儿子结点,这样就能保证满足题意了。
3.代码:
#include<iostream>
#include<algorithm>
#include<cassert>
#include<string>
#include<sstream>
#include<set>
#include<bitset>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<complex>
#include<functional>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define me(s) memset(s,0,sizeof(s))
#define rep(i,n) for(int i=0;i<(n);i++)
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair <ll, ll> P;
#define lid (id<<1)
#define rid (id<<1|1)
const int N=200005;
struct Node
{
int l,r;
int mx;
int mid(){return l+(r-l)/2;}
}tr[N*4];
int h,w,n;
void build(int L,int R,int id)
{
tr[id].l=L,tr[id].r=R;
tr[id].mx=w;
if(L==R)return;
int mid=tr[id].mid();
build(L,mid,lid);
build(mid+1,R,rid);
}
void pushup(int id)
{
tr[id].mx=max(tr[lid].mx,tr[rid].mx);
}
int update(int id,int val)
{
int l=tr[id].l,r=tr[id].r;
if(l==r){tr[id].mx-=val;return l;}//返回所在的行
int p;
if(tr[lid].mx>=val)p=update(lid,val);
else p=update(rid,val);
pushup(id);
return p;
}
int main()
{
while(~scanf("%d%d%d",&h,&w,&n))
{
int x;
build(1,min(200000,h),1);
for(int i=0;i<n;i++)
{
scanf("%d",&x);
if(tr[1].mx<x)puts("-1");
else printf("%d\n",update(1,x));
}
}
}