注意力机制与Transformer模型详解
1. 注意力机制优势概述
注意力机制在处理序列数据时展现出了显著优势,与传统的循环神经网络(RNN)相比,主要体现在以下两个方面:
|对比项|注意力机制|循环神经网络(RNN)|
| ---- | ---- | ---- |
|对序列元素的访问方式|直接访问所有输入序列元素,这虽然对最大序列长度有严格限制,但截至目前,基于Transformer的大语言模型(LLM)能够处理超过32,000个标记的序列。|将输入元素的信息编码在单个隐藏(思想向量)中,理论上它是所有序列元素的浓缩表示,但实际中表示能力有限,在新标记开始抹去旧标记信息之前,只能保留最大长度约为100个标记的有意义信息。|
|输入序列的处理方式|完全由矩阵乘法运算组成,这些运算具有高度的并行性,使得在大型训练数据集上训练具有数十亿可训练参数的LLM成为可能。|按元素到达的顺序逐个处理输入序列元素,因此无法进行并行化处理。|
不过,注意力机制也存在一个缺点,即它不像RNN那样能保留序列元素的顺序。但在Transformer编码器部分会介绍解决这一限制的方法。
2. 注意力机制的实现
2.1 缩放点积注意力的实现
缩放点积注意力实现了公式 $Attention(Q, K, V) = softmax(Q K^⊤ / \sqrt{d_k})V$,其中 $Q$ 为查询,$K$ 为键,$V$ 为值。以下是具体的Python代码实现:
import math
def attention(query, key, value
注意力机制与Transformer模型解析
超级会员免费看
订阅专栏 解锁全文
5484

被折叠的 条评论
为什么被折叠?



