22、注意力机制与Transformer模型详解

注意力机制与Transformer模型解析

注意力机制与Transformer模型详解

1. 注意力机制优势概述

注意力机制在处理序列数据时展现出了显著优势,与传统的循环神经网络(RNN)相比,主要体现在以下两个方面:
|对比项|注意力机制|循环神经网络(RNN)|
| ---- | ---- | ---- |
|对序列元素的访问方式|直接访问所有输入序列元素,这虽然对最大序列长度有严格限制,但截至目前,基于Transformer的大语言模型(LLM)能够处理超过32,000个标记的序列。|将输入元素的信息编码在单个隐藏(思想向量)中,理论上它是所有序列元素的浓缩表示,但实际中表示能力有限,在新标记开始抹去旧标记信息之前,只能保留最大长度约为100个标记的有意义信息。|
|输入序列的处理方式|完全由矩阵乘法运算组成,这些运算具有高度的并行性,使得在大型训练数据集上训练具有数十亿可训练参数的LLM成为可能。|按元素到达的顺序逐个处理输入序列元素,因此无法进行并行化处理。|

不过,注意力机制也存在一个缺点,即它不像RNN那样能保留序列元素的顺序。但在Transformer编码器部分会介绍解决这一限制的方法。

2. 注意力机制的实现

2.1 缩放点积注意力的实现

缩放点积注意力实现了公式 $Attention(Q, K, V) = softmax(Q K^⊤ / \sqrt{d_k})V$,其中 $Q$ 为查询,$K$ 为键,$V$ 为值。以下是具体的Python代码实现:

import math

def attention(query, key, value
【ACDC微电网的能源管理策略】微电网仿真模型包括光伏发电机、燃料电池系统、超级电容器和直流侧的电池,包括电压源变换器(VSC),用于将微电网的直流侧交流侧相连接Simulink仿真实现内容概要:本文介绍了一个用于ACDC微电网能源管理策略研究的Simulink仿真模型,该模型集成了光伏发电机、燃料电池系统、超级电容器和直流侧电池等多种分布式能源储能装置,并通过电压源变换器(VSC)实现微电网直流侧交流侧的连接。文档重点在于构建包含多能源协调控制能量管理策略的仿真系统,可用于研究微电网在并网孤岛模式下的稳定运行、能量优化分配及动态响应特性,体现了对复杂电力电子接口多源协同控制的建模能力。; 适合人群:电力系统、新能源发电、微电网控制及相关领域的科研人员工程技术人员,具备一定的MATLAB/Simulink仿真基础和电力电子知识背景;研究生及高年级本科生亦可参考学习。; 使用场景及目标:①开展微电网多能源系统建模仿真验证;②研究VSC在交直流互联中的控制策略;③设计优化微电网能量管理策略(EMS);④支持科研项目、课程设计或毕业设计中的系统仿真环节。; 阅读建议:建议结合MATLAB/Simulink环境实际操作,逐步搭建模型并调试各组件参数,重点关注VSC控制逻辑储能协调机制的设计,同时可拓展加入更多智能优化算法(如PSO、MPC)实现高级能量管理。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值