核岭回归

核岭回归(Kernel Ridge Regression)是将岭回归与核技巧相结合的方法,用于处理非线性问题。它在核函数映射的数据空间中学习线性函数,对于非线性核,对应于原始空间的非线性模型。虽然模型形式与支持向量回归相似,但KRR使用平方误差损失,而SVM使用的是ϵ-不敏感损失。KRR的求解过程比SVM快,但在预测时模型不是稀疏的,适合中等规模数据集。
摘要由CSDN通过智能技术生成
核岭回归(Kernel Ridge Regression)

核岭回归(Kernel Ridge Regression, KRR)结合了岭回归和分类(带l2范式正则项的线性最小二乘)和核技巧。它学到了由对应核和数据所构建空间的线性函数。对于非线性核,这对应了原始空间中的非线性函数。

KernelRidge所学到的模型形式与支持向量回归SVR相同。但是,两者使用了不同的损失函数:KRR使用平方误差损失而支持向量回归使用 ϵ − \epsilon- ϵ不敏感损失,都使用了l2正则项。与SVR不同,拟合KernelRidge能够使用精确表达式求解,并且在中等规模数据集下明显更快。另一方面,在预测时,所学到的模型不是稀疏的,比SVR慢,SVR学到的是一个对 ϵ > 0 \epsilon>0 ϵ>0的稀疏模型。

# coding: utf-8
# Comparison of kernel ridge regression and SVR

import time

import numpy as np

from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import learning_curve
from sklearn.kernel_ridge import KernelRidge

import matplotlib.pyplot as plt

rng = np.random.RandomState(0)

X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()

y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5))

X_plot = np.linspace(0, 5, 100000)[:, None]


train_size = 100
svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1),
                   param_grid={'C': [1e0, 1e1, 1e2, 1e3],
                               'gamma': np.logspace(-2, 2, 5)})

kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1),
                  param_grid={'alpha': [1e0, 0.1, 1e-2, 1e-3],
                              'gamma': np.logspace(-2, 2, 5)})

t0 = time.time()
svr.fit(X[:train_size], y[:train_size])
svr_fit = time.time() - t0
print('SVR complexity and bandwidth selected and model fitted in %.3f s' % svr_fit)

t0 = time.time()
kr.fit(X[:train_size], y[:train_size])
kr_fit = time.time() - t0
print('KRR complexity and bandwidth selected and model fitted in %.3f s' % kr_fit)

sv_ratio = svr.best_estimator_.support_.shape[0] / train_size
print('Support vector ratio: %.3f' % sv_ratio)

t0 = time.time()
y_svr = svr.predict(X_plot)
svr_predict = time.time() - t0
print('SVR prediction for %d inputs in %.3f s' % (X_plot.shape[0], svr_predict))

t0 = time.time()
y_kr = kr.predict(X_plot)
kr_predict = time.time() - t0
print('KRR prediction for %d inputs in %.3f s' % (X_plot.shape[0], kr_predict))

sv_ind = svr.best_estimator_.support_
plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors',
            zorder=2, edgecolors=(0, 0, 0))
plt.scatter(X[:100], y[:100], c='k', label='data', zorder=1,
            edgecolors=(0, 0, 0))
plt.plot(X_plot, y_svr, c='r',
         label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict))
plt.plot(X_plot, y_kr, c='g',
         label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict))
plt.xlabel('data')
plt.ylabel('target')
plt.title('SVR versus Kernel Ridge')
plt.legend()

plt.figure()

X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5))
sizes = np.logspace(1, 4, 7).astype(np.int)
for name, estimator in {'KRR': KernelRidge(kernel='rbf', alpha=0.1, gamma=10),
                        'SVR': SVR(kernel='rbf', C=1e1, gamma=10)}.items():
    train_time = []
    test_time = []
    for train_test_size in sizes:
        t0 = time.time()
        estimator.fit(X[:train_test_size], y[:train_test_size])
        train_time.append(time.time() - t0)

        t0 = time.time()
        estimator.predict(X_plot[:1000])
        test_time.append(time.time() - t0)

    plt.plot(sizes, train_time, 'o-', color='r' if name == 'SVR' else 'g',
             label="%s (train)" % name)
    plt.plot(sizes, test_time, 'o-', color='r' if name == 'SVR' else 'g',
             label="%s (test)" % name)

plt.xscale("log")
plt.yscale("log")
plt.xlabel("Train size")
plt.ylabel("Time (seconds)")
plt.title('Execution Time')
plt.legend(loc="best")

plt.figure()

svr = SVR(kernel='rbf', C=1e1, gamma=0.1)
kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1)
train_sizes, train_scores_svr, test_scores_svr = learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),
                                                                scoring='neg_mean_squared_error', cv=10)
train_sizes_abs, train_size_kr, test_scores_kr = learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),
                                                                scoring="neg_mean_squared_error", cv=10)

plt.plot(train_sizes, -test_scores_svr.mean(1), 'o-', color="r", label="SVR")
plt.plot(train_sizes, -test_scores_kr.mean(1), 'o-', color="g",  label="KRR")
plt.xlabel("Train size")
plt.ylabel("Mean Squared Error")
plt.title('Learning curves')
plt.legend(loc="best")

plt.show()
岭回归(Kernel Ridge Regression)是一种用于回归分析的非参数方法,它结合了技巧和岭回归的思想。在MATLAB中,我们可以使用KRR(Kernel Ridge Regression)函数来实现岭回归。 首先,我们需要定义一个函数。常用的函数包括线性函数、多项式函数、高斯函数等。假设我们选择使用高斯函数,可以通过MATLAB的kernelfunctions库中的'gaussian'函数来定义。 接下来,我们需要准备训练集和测试集的数据。假设我们有一个包含n个样本的训练集,其中每个样本有d个特征。我们可以把这些数据存储在一个n×d的矩阵X_train中,同时将相应的目标值存储在一个n×1的向量y_train中。 现在我们可以使用MATLAB的kridge函数来进行岭回归。该函数的基本语法为: alpha = kridge(X_train, y_train, lambda, 'kernel', 'gaussian'); 其中,X_train是训练集的特征矩阵,y_train是训练集的目标值向量,lambda是正则化参数,'kernel'表示使用的函数,'gaussian'表示高斯函数。 运行该函数后,会返回一个alpha向量,其中包含了训练得到的模型的参数。 最后,我们可以使用训练得到的模型参数来进行预测。假设我们有一个包含n个样本的测试集,其中每个样本的特征存储在一个n×d的矩阵X_test中。我们可以使用以下代码来进行预测: y_test = kipredict(X_train, X_test, alpha); 其中,X_train是训练集的特征矩阵,X_test是测试集的特征矩阵,alpha是训练得到的模型参数。运行该代码后,会返回一个n×1的向量y_test,其中包含了对测试集样本的目标值预测结果。 综上所述,我们可以使用MATLAB的kridge函数来实现岭回归,并通过训练得到的模型参数进行预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值