【机器学习基础】支持向量回归

本文深入探讨支持向量回归(Support Vector Regression, SVR),包括Kernel Ridge Regression的求解过程、与Linear Regression的比较、Tube Regression的概念及L2-Regularized Tube Regression的优化方法。此外,文章还分析了SVR的对偶问题,并回顾了Kernel模型在机器学习中的应用。" 100934201,7951068,深度学习推荐系统:DeepFM模型详解,"['推荐系统', '机器学习', '深度学习', '计算广告', 'tensorflow']
摘要由CSDN通过智能技术生成

引言

这一小节介绍一下支持向量回归,我们在之前介绍的核逻辑回归使用表示定理(Representer Theorem),将逻辑回归编程Kernel的形式,这一节我们沿着这个思路出发,看看如何将回归问题和Kernel的形式结合起来。

Kernel Ridge Regression

上次介绍的表示定理告诉我们,如果我们要处理的是有L2的正则项的线性模型,其最优解是数据zn的线性组合。我们可以将这样的线性模型变成Kernel的形式。

既然我们知道这样带有L2-Regularizer的线性回归模型的最佳解的形式,那么我们就可以将这个最佳解代入进原始的ridge regression中,用求解最佳的β来代替求解最佳的w。

我们将w是z的线性组合这个条件带进式子中,得到如下的式子,再将其转换成矩阵相乘的表示形式。

Kernel Ridge Regression的求解

上面我们得到了Kernel Ridge Regression的损失函数,要求解这样的一个无条件的最优化问题,就是对这个损失函数Eaug(β)取梯度:

令▽Eaug(β)=0,就是要将(λI+K)β-y=0,这样我们得到β的解。那么(λI+K)是不是一定可逆呢,我们知道核矩阵K是半正定的,所以这个(λI+K)的逆一定是存在的。

这里的时间复杂度大概是O(N^3),而且注意到矩阵(λI+K)里

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值