Faker被换下场,新赛季的T1还是曾经那个强劲SKT吗?

昨天,Faker登上了微博热搜。

在昨天的LCK夏季赛SKT和GRF的第一局对战结束后,教练组直接用新人Gori替换了Faker,这也是李哥时隔317天再次在比赛中被替换下场。

然而,Faker被替换后,仍然没有挽回SKT五连败的结局。SKT在S9赛季真的可以说是惨得不能再惨了,虽然在春季赛中获得了冠军,但在MSI季中赛中失利未能夺冠,使整个战队状态似乎就陷入了低迷,现在接连又遭遇五连败,直接导致他们以目前1-5的成绩排名LCK赛区倒数第二。

而最关键的是,LCK夏季赛的第一轮比赛也快要结束,所以留给SKT的时间真的很紧迫,真的不多了。而我相信此时此刻的Faker心里也是很不好受,作为LOL第一人的李哥也承受着巨大的压力。那么SKT的问题到底出现在哪里呢?近日,Inven的记者就在推特上晒出了Faker在近五个赛季的分均伤害数据。

前面也有提到,在MSI季中赛的时候SKT失利之后,整个队伍的状态就很低迷,但是将五连败的锅全部丢给Faker,相信他的粉丝们也是不会同意的。当然,我们也无可否Faker的数据和表现不如S5、S6赛季也是事实。作为战队的灵魂人物,Faker被寄予了太多的希望,所谓物极必反,相信这也不是没有关系吧。

随着SKT五连败的表现,越来越多的人也开始质疑这是否与改队名和队标有关系?在今年2月24日的时候,SKT宣布改名为T1。听到这一消息后,就有粉丝吐槽这是一个非常愚蠢的决定。毕竟,LCK赛区曾经改名的战队都遭遇到了一段时间的低迷期。例如ROX,在改名为HLE后成绩平平,并没有让大家感到希望;SSG在获得S7冠军后改名为Gen.G,直到现在都呈现一蹶不振的状态,目前已经沦为LCK赛区的“经验宝宝”;LZ战队改名为KZ后,从整个S8来看,其表现也是非常低迷甚至还无缘S赛,让大家感到非常的失望。而从现在SKT五连败的战绩来看,人们的质疑声就更加高涨了。

屋漏偏逢连夜雨。没有最惨,只有更惨。就在粉丝们担心SKT战队有多大胜算参加今年的S9世界赛时,SKT战队多名选手却被曝出了侮辱女性事件,瞬间让这支夏季赛表现并不是很好的SKT战队,雪上加霜。事件起因是,cild,Khan以及mata三人组因为在直播过程中突然公然调侃女性,被怀疑有侮辱女性的嫌疑。一下子就在韩国本土掀起惊涛骇浪,而这件事如果被网友上报到LCK官方,这三人估计难逃被禁赛的处罚。

不得不说,现先的SKT极度不稳定,而Faker也随着心态的变化和年龄的增大无法carry比赛,而这些情况始终是SKT和Faker的粉丝不愿意看到的。但即使状态下滑,依然也无可否认Faker曾经的辉煌成就,三个S赛冠军。面对电竞时代的日新月异,很多年后提到LCK赛区能够第一时间想到的依然是LOL第一人Faker吧。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值