分布式系统中的大规模查询优化与信息空间QoS分配算法
在当今的分布式系统中,大规模查询优化和信息空间的服务质量(QoS)分配是两个关键的研究领域。下面将详细介绍这两个方面的相关研究内容。
大规模查询优化
在分布式流系统中,大规模查询优化至关重要。研究人员对系统的根协调器进行了研究,因为它可能是系统的潜在瓶颈。通过改变集群大小参数k,得到了不同的实验结果。
- 参数k对查询分布和吞吐量的影响 :较小的k值会使查询分布质量变差,这是因为协调器树的层数更多,图的粗化操作也更多。但较小的k值能提高查询流的吞吐量,原因是根协调器需要将查询路由到更少的子节点。因此,自适应地设置参数k是未来值得研究的方向。
- 流速率变化时的查询重分配 :在运行时,多次增加(用“I”表示)或减少(用“D”表示)800个随机流的速率,导致系统内出现负载不平衡。研究比较了自适应方案与两种其他方案:
- 重新映射(Re - mapping) :使用集中式映射算法将全局查询图重新映射到全局网络图。
- 非自适应(Non - Adaptive) :不进行任何自适应操作。
实验结果如图10所示,自适应查询重分配的性能接近集中式重新映射,能在不增加通信成本的情况下重新平衡系统负载,以适应新的数据特征。虽然重新映射算法能取得更好的结果,但它产生的查询迁移次数约为自适应算法的7倍。
方案 | 通信成本 | 负载标准差 |
---|