AI在教育领域的应用挑战与创新起步
1. AI在教育应用中的挑战
在机器学习对人类行为、知识或活动进行预测的背景下,“不公平”指的是基于预测做出的决策最终会导致个人或群体处于不利地位。例如,在学生建模的研究实验中,知识追踪模型错误地预测成绩较低的学生在掌握材料方面与其他学生相当。
为了弥补“不准确差距”,在实现更高的准确性和更好的学生建模之前,需要设计解决方案,让人类弥补这一差距,同时让AI完成大量的基础工作。例如,AI可能预测学生能在新的信息文本阅读理解中取得好成绩,但可能未考虑到新阅读材料的领域复杂性。为防止此类问题,AI设计者可能需要与阅读教练合作。
准确性与泛化性密切相关,泛化性是指在更一般、非特定场景下工作的能力。目前很多AI技术研究进展所处的环境与无屏幕的K - 12课堂环境不同,这些技术在教学中的应用大多还只是大的设想。很多成功案例来自非课堂环境,如语音研究由家庭助理设备制造商推动,语音研究由手机助手推动等,这些技术在教学中的应用并非一蹴而就。
要在无屏幕的课堂学习环境中取得成功,研究需要至少部分在学生、教师、教室和实体学校的约束和条件下进行,这将成为新发现、实践和观点的来源。
教师需要不断解释机器在理解学生思维过程中生成的数字,以及理解AI推荐某种教学行动的原因。然而,像深度学习这样的数学密集型技术,其模型的可解释性很低,即使是构建这些AI系统的人也很难理解隐藏的功能和层次。解决此类问题的领域被称为可解释AI,它与公平性和透明度问题都属于机器学习中“公平性、问责性和透明度”的范畴。
教师除了理解计算机思维中的“推理”,还可能需要帮助计算机理解训练过程中获取的数据。以下是一些具体例子:
|场景|具