强化学习中的约束优化方法详解
在强化学习(RL)和自适应动态规划(ADP)领域,处理状态约束和安全问题是至关重要的。本文将详细介绍几种常见的约束优化方法,包括惩罚函数方法、拉格朗日乘数法和可行下降方向法,帮助读者深入理解这些方法的原理和应用。
惩罚函数方法
惩罚函数方法主要有两种:加法平滑惩罚和吸收状态惩罚。
加法平滑惩罚
加法平滑惩罚方法是将惩罚项添加到每个效用函数中,从而将违反约束的惩罚分散到整体目标函数中。在强化学习社区中,有外部惩罚和内部惩罚两种类型,其中外部惩罚更为流行,因为它能够缓解状态约束的严格性,有助于避免潜在的不可行性问题。
以无限时域逐点约束为例,整体目标函数由一组惩罚后的效用函数构建而成:
[J_{mod}=\sum_{i = 0}^{\infty}l_{mod}(x_{t + i}, u_{t + i})]
其中,
[l_{mod}(x, u)=l(x, u)+\rho\cdot\phi(x)]
惩罚项(\phi(\cdot))是与状态约束相关的函数,(\rho>0) 被称为惩罚系数。常见的惩罚项设计策略包括整流线性惩罚:
[\phi(x)=\begin{cases}0, & h(x)\leq0\h(x), & \text{otherwise}\end{cases}]
这种整流函数对不满足约束的情况给予线性惩罚。其他惩罚策略还包括一次性常数惩罚、指数风险惩罚和整流二次惩罚等。
加法平滑惩罚的本质是在状态约束不满足时,稍微增加原始成本函数。这种机制更容易使策略学习到局部最小值。该方法的一个特殊优势是,惩罚后的值函数