连续时间近似动态规划与强化学习算法详解
在当今的控制理论与优化领域,连续时间近似动态规划(ADP)和强化学习(RL)算法正发挥着越来越重要的作用。本文将深入探讨连续时间ADP的相关理论,包括其收敛性、稳定性,以及在不同场景下的应用,同时也会介绍如何运行RL和ADP算法。
连续时间ADP的基础理论
在连续时间ADP中,$V(0) = 0$ 是一个必要条件。这是因为与离散时间域类似,$H = l + \nabla^T V \cdot f = 0$ 本质上是一个一阶导数条件,它不包含任何关于初始条件或终端条件的信息。这个条件将价值函数在平衡点固定到一个特殊的设定点。
连续时间ADP的策略迭代具有较高的效率,这得益于其内在的牛顿 - 拉夫逊机制,即反复求解一个简单的一阶常微分方程(ODE)和一个低维优化问题。然而,尽管连续时间ADP作为一种数值求解器很有前景,但先前的研究表明,在连续时间域中准确找到解析最优解仍然非常具有挑战性,特别是对于大规模非线性问题。
收敛性和稳定性分析
在连续时间域中,收敛性和稳定性是两个不同但内在相互纠缠的性质。
稳定性
稳定性指的是一个控制策略(如 $u = \pi(x)$)是否能使系统稳定。证明的关键是为 $\forall x \in \mathcal{X}$ 选择一个正定函数 $V(x)$ 作为李雅普诺夫候选函数,并检查其时间导数是否为负半定,即 $\frac{dV(x)}{dt} \leq 0, \forall x \in \mathcal{X}$。
初始策略 $\pi_0$ 必须是可允许的,以保证其对应的初始值是有限的,即 $V_0(x) <