基于卷积神经网络的轴承故障识别:实现99%准确率的Matlab代码详解,基于卷积神经网络的轴承故障识别算法实现及其性能评估

基于卷积神经网络的,轴承故障识别。
matlab代码,
请大佬指教的,准确率能到99%以上。
实际上代码很多,但是主要步骤分为4个,
1 是凯斯西储大学数据集的划分,
2 是4种(连续小波变换,短时傅立叶,广义s变换,w-v变换)不同数据处理方法转化为时频图的对比。
(时频图数据集是用连续小波生成的)
3 是设定CNN模型然后用训练集训练。
4 是用测试集测试,输出准确率。
请大佬指教的,操作简单,绝对跑的出结果。
只是出售代码回点血,供需要的大四(毕,设),研一朋友研究。
(下图自己跑的,时频图和最后识别准确率)

ID:29239671920248450

天狼星清爽果干


基于卷积神经网络的轴承故障识别

摘要:随着工业制造技术的不断发展,轴承在机械设备中起到至关重要的作用。故障的轴承可能导致机械设备的性能下降,甚至造成设备损坏和事故发生。因此,准确、快速地检测和识别轴承故障是非常重要的。本文基于卷积神经网络提出了一种轴承故障识别的方法,并给出了具体实现方案。

  1. 引言
    轴承是机械设备中常见的零部件之一,承载着传动系统的负荷。然而,长时间的运转和恶劣的工作环境可能导致轴承的故障,进而影响设备的正常工作。因此,提前检测和准确识别轴承故障是维护机械设备性能和延长设备寿命的关键。

  2. 数据集的划分
    本文采用了凯斯西储大学提供的轴承数据集进行实验。这个数据集包含了多种不同类型的轴承故障样本。为了保证实验的准确性和可靠性,我们将数据集划分为训练集和测试集两部分。其中,训练集用于建立卷积神经网络的模型,测试集用于评估模型的准确性。

  3. 数据处理方法的对比
    为了提高轴承故障的识别准确率,本文采用了四种不同的数据处理方法,分别为连续小波变换、短时傅立叶变换、广义s变换和w-v变换。通过将原始数据转化为时频图,可以更好地表达数据的特征。实验结果表明,连续小波变换生成的时频图在轴承故障识别中表现出色。

  4. 基于卷积神经网络的轴承故障识别
    为了实现轴承故障的自动识别,本文提出了一种基于卷积神经网络的方法。首先,通过定义合适的网络结构,包括卷积层、池化层和全连接层等,构建了一个适用于轴承故障识别的卷积神经网络模型。然后,利用训练集对模型进行训练,通过反向传播算法不断调整网络参数,使其能够更好地学习轴承故障的特征。最后,借助测试集对训练好的模型进行评估,输出模型的准确率。

  5. 实验结果和讨论
    本文通过实验对所提出的方法进行了验证。实验结果显示,基于卷积神经网络的轴承故障识别方法能够高度准确地识别不同类型的轴承故障。在凯斯西储大学数据集上,该方法的识别准确率超过了99%。这表明,该方法在实际应用中具有很高的可靠性和准确性。

  6. 结论
    本文基于卷积神经网络提出了一种轴承故障识别的方法,并通过实验证明了该方法的有效性和准确性。该方法具有操作简单、准确率高等优点,可以为工程师和研究人员提供一个可靠的轴承故障识别工具。未来,我们将进一步改进该方法,提高其在复杂环境下的适应性和泛化能力。

参考文献:
[1] H. Zhang, H. Li, and X. Liu, “Bearing fault diagnosis based on convolutional neural network optimized by genetic algorithm,” IEEE Access, vol. 5, pp. 16650-16661, 2017.
[2] M. Q. Meng, Y. Guo, and J. D. Yue, “Fault diagnosis of rotating machinery based on time-frequency image and convolutional neural network,” Mechanical Systems and Signal Processing, vol. 90, pp. 383-396, 2017.

相关的代码,程序地址如下:http://wekup.cn/671920248450.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值