LeetCode动态规划 买卖股票的最佳时机

本文解析如何使用动态规划解决投资问题,通过状态转移方程 dp[i]=min(dp[i-1], prices[i]) 计算股票交易中的最大利润,边界条件为 dp[0]=prices[0]。代码实例展示了如何实现这一算法来寻找最优买卖时机。
摘要由CSDN通过智能技术生成

You are given an array prices where prices[i] is the price of a given stock on the ith day.
You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.
Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

状态转移方程
dp[i] = min(dp[i-1], prices[i])

边界条件
dp[0] = prices[0]

代码

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        int dp[100005] = {0};
        dp[0] = prices[0];
        int maxn = 0;

        for(int i = 1; i < len; i++)
        {
            dp[i] = min(dp[i-1], prices[i]);
            if(prices[i] -dp[i-1] > maxn)
            maxn = prices[i] -dp[i-1];
        }
        return maxn;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值