计算直线与平面的交点

设直线上一点 p,以及其方向 dir

则直线公式可写作  p+t*dir

设平面法向量为nml,平面上一点 p0

方法一:

直线与平面相交时,必满足

dot ( (p+t*dir-p0),nml)=0

 即

dot (p-p0,nml)+t*dot(dir,nml)=0

于是得

t= -dot(p-p0,nml)/dot(dir,nml)

方法二:

利用平面的法线nml和平面内一点构造一个Matrix4,TM

然后把点p和dir都转换到TM空间中,那么当y坐标为0时,即在该平面上。

设P转换后的坐标为_p,dir转换为_dir.

则有

 _p.y+t*_dir.y=0;

得出

t=-_p.y/_dir.y;
newp=p+t*dir;

在自己使用MAXScript编写的脚本中使用了这一方法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值