全息重建技术:原理、方法与设置考量
1. 重建基础
在全息重建中,相关对象项 $|O_0(x, y, t)|^2$ 可被分离,这是离轴几何才能实现的。当物体聚焦时,自相关项通常不在焦点上,但会增加额外的相干噪声,尤其在重建体积的上部区域。
1.1 一个瑞利长度的重建
对于所有波数(即所有采集时间)的相位校正对象波场(5.3.12)或(5.3.18),可以传播回体积的一个公共平面。相位校正传播会逆转(5.3.8)中相位校正传播器对所选重建距离的影响。根据所选的体积公共平面,它还会设置重建的焦点。经过数值计算后得到的数据,等同于测量的全场频域光学相干断层扫描(FD - OCT)数据。沿着 $k$ 轴进行傅里叶变换,类似于 FD - OCT 处理,以实现深度切片。重建体积在采集图像传播到的平面上将具有衍射极限分辨率,而其他平面的横向分辨率会像经典光学中那样下降。
若选择一个相对于参考平面距离为 $z_P$ 的平面进行清晰重建,重建对象可通过以下公式获得:
[
P_{0,k,-z_0 - z_P}[O_0(x, y, k)] = A_{O}A_{C}(k)\int dz P_{0,k,-z_0 - z_P}P_{0,k,z_0 + z}[\eta(x, y, z)e^{2ikz}] = A_{O}A_{C}(k)\int dz P_{0,k,z - z_P}[\eta(x, y, z)e^{2ikz}]
]
这些数据现在可与具有根据所选重建深度 $z = z_P$ 聚焦的全场 FD - OCT 数据相比较。对 $k$ 轴进行傅里叶变换,得到散射势:
[
\tilde{A} {C}(z) * \e
超级会员免费看
订阅专栏 解锁全文
926

被折叠的 条评论
为什么被折叠?



