Matrix Power Series_矩阵快速幂求和

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3


//#include<bits/stdc++.h>
#include<iostream>
#include<vector>
using namespace std;
int mod;
#define f(i,n) for(i=0;i<n;i++)
typedef vector<int> vec;
typedef vector<vec> mat;

mat mul(mat &a,mat &b){
    mat c(a.size(),vec(b[0].size()));
    int i,j,k;
    f(i,a.size())
    f(k,b.size())
    f(j,b[0].size())
    c[i][j]=(c[i][j]+a[i][k]*b[k][j])%mod;
    return c;
}

typedef  long long ll;
mat pow(mat a,ll n){
    mat b(a.size(),vec(a.size()));
    int i,j;
    f(i,a.size())b[i][i]=1;
    while(n>0){
        if(n&1)b=mul(b,a);
        a=mul(a,a);
        n/=2;
    }
    return b;
}

int main(){
    //freopen("in.txt","r",stdin);
    int n,k;
    cin>>n>>k>>mod;
    mat b(n*2,vec(n*2));
    int i,j;
    f(i,n){
        f(j,n)
        cin>>b[i][j];
        b[i+n][i]=b[n+i][n+i]=1;
    } 

    b=pow(b,k+1);
    f(i,n)f(j,n){
        int a=b[n+i][j]%mod;
        if(i==j)a=(a+mod-1)%mod;
        printf("%d%c",a,j+1==n?'\n':' ');
    }
//    fclose(stdin);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值