draw.io diagrams 画图 插入latex数学公式

本文介绍如何使用Draw.io这款强大的画图工具,轻松在图表中插入LaTeX数学公式,实现高质量的学术文档制作。文章详细讲解了启用数学排版功能的方法,以及如何在Draw.io中输入LaTeX公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

draw.io

https://www.draw.io/

强大的画图工具,可以方便的导出pdf文件,直接导入latex很舒适。
有离线和在线版本,处处可用。

画图中数学符号公式的标注

除了日常的行文,要在图中标注数学符号公式时,visio有点捉襟见肘。比较无聊的方法是把数学公式在latex写好然后截图插入需要的地方。

有了强大的draw让你和写latex中的数学符号一样方便。
因为找不到中文帮助文件,这里根据使用经验简要留点资料。

启动数学排版

如下图先将draw的语言切换为简体中文,然后依次点开工具栏–>其它–>数学排版。

在这里插入图片描述

官方英文帮助

数学排版边上的问号链接到FAQ地址是https://desk.draw.io/support/solutions/articles/16000032875
下图红色标注的地方可以打开一个示例文件math.xml,进去后可以照葫芦画瓢。
在这里插入图片描述

在这里插入图片描述

latex日常够用

和正常使用draw画图一样新建文件把图形画好,插入的时候其实很简单。
选择插入文本,启用数学排版后,latex公式的输入只需要在公式前后各增加两个$符号即可,,如下

$$J_\alpha(x) = \sum\limits_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m + \alpha + 1)}{\left({\frac{x}{2}}\right)}^{2 m + \alpha}$$

上面的公式编辑好退出后就可以看见自动变成公式符号,截图如下
在这里插入图片描述

<think>好的,用户想了解如何绘制LSTM神经网络结构图。首先,我需要回忆一下常用的绘图工具,比如PPT、Visio这些传统工具,但可能不太专业。然后想到一些专门针对神经网络的工具,比如NN-SVG、Draw.ioLaTeX的TikZ包,还有Keras和TensorFlow自带的模型可视化功能。 用户提供的引用里提到了引用[2]推荐了绘图工具,比如用于CNN的模型,可能这些工具也适用于LSTM。引用[3]和[4]提到使用Keras构建LSTM模型,并提到模型结构,所以Keras的model.summary()和可视化工具可能有用。此外,引用[1]中的LSTM结构图可能需要更专业的工具来绘制细节,比如门控机制和记忆单元。 需要分步骤解答:首先推荐工具,然后说明每种工具的使用方法,可能还要提到注意事项,比如是否需要编程基础,或者是否支持导出高质量图片。同时,用户可能需要知道如何具体绘制LSTM的结构,比如cell的结构和各部分门控的表示。 还要考虑用户的技术背景,可能有些用户喜欢图形化界面,比如Draw.io,而有些需要代码生成,比如使用LaTeX或Python库。此外,引用中提到的TensorFlow和Keras的实现,可以建议他们使用自带的可视化功能,比如keras.utils.plot_model,这可能需要安装graphviz。 最后生成相关问题,可能涉及LSTM结构细节、工具比较、可视化代码示例等。要确保回答结构清晰,步骤明确,引用相关的资料来支持推荐的工具和方法。</think>### 如何绘制LSTM神经网络结构图 #### 1. **专业神经网络绘图工具推荐** - **NN-SVG**:支持自动生成LSTM单元的可视化结构,可导出SVG格式,适合学术论文插图[^2]。 - **Draw.io (diagrams.net)**:提供预定义的神经网络元件库,通过拖拽门控结构(输入门、遗忘门、输出门)和记忆单元模块快速搭建示意图。 - **LaTeX TikZ**:通过代码精确控制门控机制连接方式,例如用以下代码绘制LSTM单元: ```latex \node[lstm,minimum width=2cm] (lstm) at (0,0) {LSTM}; \draw[->] (lstm.east) -- ++(1,0); ``` #### 2. **深度学习框架可视化** - **Keras/TensorFlow模型可视化**:使用`model.summary()`输出文本结构描述,或通过`keras.utils.plot_model(model, show_shapes=True)`生成带数据流动方向的架构图(需安装Graphviz)[^3]。 - **Netron**:导入LSTM模型文件(如HDF5格式),自动解析层间连接关系,支持3D视角查看权重分布。 #### 3. **手绘设计方法** 对理论分析场景,可标注关键组件: 1. 绘制记忆单元水平线 2. 添加三个门控结构(输入门$i_t$、遗忘门$f_t$、输出门$o_t$) 3. 用箭头连接门控与记忆单元的数学表达式: $$C_t = f_t \odot C_{t-1} + i_t \odot \tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$$ #### 4. **注意事项** - 时序特征表达:使用循环箭头明确时间步展开特性 - 参数标注:在门控旁注明激活函数(如$\sigma$表示sigmoid) - 工业级工具链:Proteus可生成带物理特性的FPGA实现示意图[^1]
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值