import json
from functools import reduce
import numpy as np
import time
from multiprocessing import Pool, cpu_count
import psutil
from billiard.queues import Queue
from billiard import get_context
from concurrent.futures import ProcessPoolExecutor
from loky import get_reusable_executor
from billiard.process import Process
def fill_json_with_sin_values_serial(data_array):
start_time = time.time()
result_dict = {
"sin_values": []
}
for value in data_array:
result_dict["sin_values"].append(np.sin(value))
print(f"normal execution time: {time.time() - start_time:.2f} seconds")
def compute_sin_chunk(chunk):
return np.sin(chunk).tolist()
def fill_json_with_sin_values_multiprocessing(array_size, num_processes=None):
start_time = time.time()
data_array = np.linspace(0, 2 * np.pi, array_size)
if num_processes is None:
num_processes = cpu_count()
chunk_size = array_size // num_processes
chunks = [data_array[i * chunk_size:(i + 1) * chunk_size] for i in range(num_processes)]
with Pool(num_processes) as pool:
sin_chunks = pool.map(compute_sin_chunk, chunks)
sin_values = [value for chunk in sin_chunks for value in chunk]
result_dict = {
"sin_values": sin_values
}
json_result = json.dumps(result_dict, indent=4)
print(f"Multiprocessing execution time: {time.time() - start_time:.2f} seconds")
return json_result
from joblib import Parallel, delayed
def fill_json_with_sin_values_joblib(array_size, num_processes=None):
start_time = time.time()
data_array = np.linspace(0, 2 * np.pi, array_size)
if num_processes is None:
num_processes = cpu_count()
chunk_size = array_size // num_processes
chunks = [data_array[i * chunk_size:(i + 1) * chunk_size] for i in range(num_processes)]
if array_size % num_processes != 0:
chunks.append(data_array[chunk_size * num_processes:])
with Parallel(n_jobs=num_processes) as parallel:
sin_chunks = parallel(delayed(compute_sin_chunk)(chunk) for chunk in chunks)
sin_values = [value for chunk in sin_chunks for value in chunk]
result_dict = {
"sin_values": sin_values
}
json_result = json.dumps(result_dict, indent=4)
print(f"Joblib execution time: {time.time() - start_time:.2f} seconds")
return json_result
def process_chunk(chunk):
return np.array([np.sin(value) for value in chunk])
def fill_json_with_sin_values_loky(data_array, array_size, max_workers=None):
start_time = time.time()
result_dict = {
"sin_values": []
}
chunk_size = array_size // max_workers
chunks = [data_array[i * chunk_size:(i + 1) * chunk_size] for i in range(max_workers)]
with get_reusable_executor(max_workers=max_workers) as executor:
future_to_result = [executor.submit(process_chunk, chunk) for chunk in chunks]
sin_values = []
for future in future_to_result:
sin_values.extend(future.result())
result_dict["sin_values"] = sin_values
print("loky execution completed: {}".format(time.time()-start_time))
def worker_task(data_chunk, result_queue, start_index):
"""计算数据块的正弦值,并将结果发送到结果队列中。"""
sin_values = np.sin(data_chunk)
result_queue.put((start_index, sin_values))
def fill_json_with_sin_values_billiard(array_size):
start_time = time.time()
data_array = np.linspace(0, 2 * np.pi, array_size)
num_processes = cpu_count()
chunk_size = array_size // num_processes
ctx = get_context()
result_queue = ctx.Queue()
processes = []
for i in range(num_processes):
start_index = i * chunk_size
if i == num_processes - 1:
data_chunk = data_array[start_index:]
else:
data_chunk = data_array[start_index:start_index + chunk_size]
p = Process(target=worker_task, args=(data_chunk, result_queue, start_index))
processes.append(p)
p.start()
sin_values_list = []
for _ in range(num_processes):
start_index, sin_chunk = result_queue.get()
sin_values_list.extend(sin_chunk)
result_dict = {
"sin_values": sin_values_list
}
json_result = json.dumps(result_dict, indent=4)
for p in processes:
p.join()
print(f"parallel execution time: {time.time() - start_time:.2f} seconds")
return json_result
if __name__ == "__main__":
array_size = 10000000
data_array = np.linspace(0, 2 * np.pi, array_size)
fill_json_with_sin_values_serial(data_array)
import os
fill_json_with_sin_values_loky(data_array, array_size, max_workers=8)