
人工智能
文章平均质量分 82
智慧浩海
源码资源仅供个人研究参考学习,不得将内容资源用于商业或者非法用途,否则,一切后果请用户自负,暂不提供安装服务和技术支持。文档资料部分来源于合法的互联网渠道收集和整理,部分自己学习积累成果,供大家学习参考与交流。收取的费用仅用于收集和整理资料耗费时间的酬劳。 本人尊重原创作者或出版方,资料版权归原作者或出版方所有,本人不对所涉及的版权问题或内容负法律责任。如有侵权,请通知本人删除。
展开
-
人工智能知识基础代理
基于知识的代理的体系结构:上图表示基于知识的代理的通用体系结构。基于知识的代理(KBA)通过感知环境从环境中获取输入。输入由代理的推理引擎获取,并且还与KB通信以根据KB中的知识存储来决定。KBA的学习元素通过学习新知识定期更新KB。:知识库是基于知识的代理的核心组件,也称为KB。它是一个句子集合(这里的“句子”是一个技术术语,它与英语中的句子不同)。这些句子用一种称为知识表示语言的语言表达。KBA的知识库存储了关于世界的事实。原创 2023-11-08 09:09:47 · 134 阅读 · 0 评论 -
人工智能的最小最大算法
在下面的树形图中,下面来看看A是树的初始状态。假设Maximizer采用具有最坏情况初始值 = -无穷大的第一次转弯,并且Minimizer将采用具有最坏情况初始值=+无穷大的下一转弯。:现在,首先我们找到Maximizer的效用值,它的初始值是-∞,因此将比较终端状态中的每个值和Maximizer的初始值,并确定更高的节点值。:现在轮到Maximizer,它将再次选择所有节点的最大值并找到根节点的最大值。在这个游戏树中,只有4层,因此我们立即到达根节点,但在真实游戏中,将有超过4层。原创 2023-11-07 09:04:10 · 584 阅读 · 0 评论 -
对抗性搜索
对抗性搜索是一种搜索,在此检查当尝试在世界范围内进行计划而其他代理正在计划针对时出现的问题。原创 2023-11-07 09:02:32 · 131 阅读 · 0 评论 -
人工智能结束分析
因此,我们创建当前状态的子问题,其中可以应用运算符,这种类型的反向链接,其中选择运算符,然后设置子目标以建立运算符的前提条件,称为运算符子目标。在比较状态之后,仍然存在一个差异,即方形的大小,因此,将应用Expand运算符,最后,它将生成目标状态。为了解决上述问题,将首先找到初始状态和目标状态之间的差异,并且对于每个差异,我们将生成一个新状态并将应用运算符。应用删除运算符后,将出现新状态,将再次与目标状态进行比较。在第一步中,将评估初始状态,并将比较初始状态和目标状态,以找出两个状态之间的差异。原创 2023-11-07 09:01:54 · 142 阅读 · 0 评论 -
人工智能爬山算法
爬山()算法是一种局部搜索算法,它在增加高度/值的方向上连续移动,以找到山峰或最佳解决问题的方法。它在达到峰值时终止,其中没有邻居具有更高的值。爬山算法是一种用于优化数学问题的技术。其中一个广泛讨论的爬山算法的例子是旅行商问题,其中我们需要最小化推销员的行进距离。它也称为贪婪的本地搜索,因为它只关注其良好的直接邻居状态而不是超越它。爬山算法的节点有两个组成部分,即状态和值。Hill Climbing主要用于有良好启发式的时候。在此算法中,不需要维护和处理搜索树或图形,因为它只保留单个当前状态。原创 2023-11-06 11:13:16 · 689 阅读 · 0 评论 -
知情搜索算法
在前面章节中,我们已经讨论了不知情搜索算法,该搜索算法通过搜索空间查找问题的所有可能解决方案,而无需任何关于搜索空间的额外知识。但是,知情搜索()算法包含一系列知识,例如我们离目标有多远,路径成本,如何到达目标节点等。这些知识有助于代理人更少地探索搜索空间并更有效地找到目标节点。知情搜索算法对于大型搜索空间更有用。知情搜索算法使用启发式思想,因此也称为启发式搜索。:启发式是一种在Informed Search中使用的函数,它找到了最有希望的路径。原创 2023-11-06 11:12:42 · 329 阅读 · 0 评论 -
不知情搜索算法
不知情的搜索是一类通用搜索算法,它以强力方式运行。除了如何遍历树之外,不知情的搜索算法没有关于状态或搜索空间的附加信息,因此它也称为盲搜索。原创 2023-11-06 11:12:02 · 362 阅读 · 0 评论 -
人工智能搜索算法
搜索算法是人工智能最重要的领域之一。本主题将解释有关AI中搜索算法的所有信息。原创 2023-11-04 10:44:59 · 197 阅读 · 0 评论 -
人工智能图灵测试
1950年,艾伦·图灵(Alan Turing)介绍了一项测试,以检查机器是否能像人类一样思考,这项测试称为图灵测试。在这个测试中,图灵提出如果计算机可以在特定条件下模仿人类的反应,那么可以说计算机是智能的。图灵在其1950年的论文“计算机器和智能”中介绍了图灵测试,该论文提出了“机器能想到吗?”的问题。图灵测试基于派对游戏“模仿游戏”,并进行了一些修改。这个游戏涉及三个玩家,其中一个玩家是计算机,另一个玩家是人类响应者,第三个玩家是人类询问者,与其他两个玩家隔离,他的工作是找到哪个玩家是其中两个玩家。原创 2023-11-04 10:44:26 · 260 阅读 · 0 评论 -
人工智能AI代理环境
环境是围绕代理的一切,但它不是代理本身的一部分。环境可以描述为存在代理的情况。操作为代理提供感知和行动的环境。原创 2023-11-04 10:43:52 · 142 阅读 · 0 评论 -
人工智能代理
代理可以是通过传感器感知环境并通过执行器对该环境起作用的任何事物。代理在感知,思考和行动的循环中运行。人体代理:人类代理人的眼睛,耳朵和其他器官,用于传感器和手,腿,致动器的声道工作。机器人代理:机器人代理可以是摄像头,红外测距仪,传感器NLP和各种执行器电机。软件代理:软件代理可以将击键,文件内容作为传感输入,并对这些输入进行操作并在屏幕上显示输出。因此,我们周围的世界充满了如:恒温器,手机,相机等代理,甚至我们自己也是代理。在继续前进之前,我们首先应该了解传感器,效应器和执行器。传感器。原创 2023-11-03 14:54:15 · 292 阅读 · 0 评论 -
人工智能代理类型
不保证正确性,因使用而带来的风险与本站无关!顶部_720x90代理可以根据其感知智能和能力的程度分为五类。所有这些代理都可以改善其性能并在一段时间内产生更好的行动。原创 2023-11-03 14:53:21 · 219 阅读 · 0 评论 -
人工智能的类型
人工智能可以分为多种类型,主要有两种类型的主要分类,它们基于能力并基于AI的功能。以下是解释AI类型的流程图。原创 2023-11-03 14:52:31 · 559 阅读 · 0 评论 -
人工智能历史
人工智能不是一个新词,也不是研究人员的新技术。这项技术比想象的要老很多。甚至在古希腊和埃及神话中也有机械人的神话。以下是AI历史上的一些里程碑,它定义了从AI生成到迄今为止的发展历程。原创 2023-11-02 09:00:28 · 226 阅读 · 0 评论 -
人工智能的应用
人工智能在当今社会中具有各种应用。它已成为当今时代的必要条件,因为它可以在多个行业中以有效的方式解决复杂问题,例如医疗保健,娱乐,金融,教育等。AI使我们的日常生活更加舒适和快速。原创 2023-11-02 08:59:57 · 201 阅读 · 0 评论 -
人工智能简介
人工智能由人工和智能两个词组成,其中人工定义“人造”,智能定义“思维能力”,因此AI意为“人造思维能力”。因此,可以将AI定义为“它是计算机科学的一个分支,通过它可以创建智能机器,它可以像人类一样运作,像人类一样思考,并能够做出决策。当机器具有基于人的技能(例如学习,推理和解决问题)时,人工智能就存在。使用人工智能,我们不需要对机器进行预编程来完成某些工作,尽管可以创建具有编程算法的机器,该算法可以使用自己的智能,这就是AI的利害之处。原创 2023-11-02 08:58:58 · 99 阅读 · 0 评论