参数估计

点估计

设总体 X X 的分布函数的形式已知,但它的一个或者多个参数未知,借助于总体X的一个样本来估计总体未知参数的值的问题称为参数的点估计问题
点估计问题的一般提法
设总体 X X 的分布函数为F(x;θ)的形式为已知, θ θ 是待估计的参数。

X1,X2,,Xn X 1 , X 2 , ⋯ , X n X X 一个样本x1,x2,,xn是相应的一个样本值

点估计问题就是要构造一个适当的 θ^(X1,X2,,Xn) θ ^ ( X 1 , X 2 , ⋯ , X n ) ,用它的观察值 θ^(x1,x2,,xn) θ ^ ( x 1 , x 2 , ⋯ , x n ) 作为未知参数 θ θ 的近似值,
我们称 θ^(X1,X2,,Xn) θ ^ ( X 1 , X 2 , ⋯ , X n ) θ θ 估计量,称为 θ^(x1,x2,,xn) θ ^ ( x 1 , x 2 , ⋯ , x n ) θ θ 估计值
在不至混淆的情况下统称估计量和估计值为估计


矩估计法

X X 为连续型随机变量,其概率密度为f(x;θ1,θ2,,θk),或 X X 为离散型随机变量,其分布律为P{X=x}=p(x;θ1,θ2,,θk),其中 θ1,θ2,,θk θ 1 , θ 2 , ⋯ , θ k 为待估计参数, X1,X2,,Xn X 1 , X 2 , ⋯ , X n 是来自 X X 的样本。假设总体X的前 k k 阶矩
连续型

μ=E(X)=xf(x;θ1,θ2,,θk)dx

或者:
离散型

μ=E(X)=xRXxp(x;θ1,θ2,,θk) μ ℓ = E ( X ℓ ) = ∑ x ∈ R X x ℓ p ( x ; θ 1 , θ 2 , ⋯ , θ k )

=1,2,,k ℓ = 1 , 2 , ⋯ , k

存在
一般来说,他们是 θ1,θ2,,θk θ 1 , θ 2 , ⋯ , θ k 的函数。基于样本矩
A=1ni=1nXi A ℓ = 1 n ∑ i = 1 n X i ℓ

其中 RX R X X X 的可能取值的范围

注:
矩估计法不要求总体服从什么分布,只要总体矩E(X)存在即可。

矩估计量的性质:
(1) ( 1 ) 样本原点矩 1nni=1Xki 1 n ∑ i = 1 n X i k 是相应总体原点矩 E(Xk) E ( X k ) 的无偏、一致估计,即:

E(1ni=1nXki)=E(Xk),,1ni=1nXkiPE(Xk)(n) E ( 1 n ∑ i = 1 n X i k ) = E ( X k ) , 且 , 1 n ∑ i = 1 n X i k ⟶ P ⁡ E ( X k ) ( n → ∞ )

(2) ( 2 ) 样本矩 A=1nni=1Xi A ℓ = 1 n ∑ i = 1 n X i ℓ 的连续函数是相应总体矩 α=E(X) α ℓ = E ( X ℓ ) 连续函数的一致(相合)性估计,但是未必是无偏估计,即:
g(A1,,An)Pg(a1,,an) g ( A 1 , ⋯ , A n ) ⟶ P ⁡ g ( a 1 , ⋯ , a n ) 但是 E(g(A1,,An)) E ( g ( A 1 , ⋯ , A n ) ) 未必等于 g(a1,,an) g ( a 1 , ⋯ , a n )


最大似然估计法

基本思想(最大似然估计原理)

对未知参数 θ θ 进行估计时,在该参数可能的取值范围 Θ Θ 内选取,使”样本获得此观测值 X1,X2,,Xn X 1 , X 2 , ⋯ , X n ”的概率最大的参数值 θ^ θ ^ 作为 θ θ 的估计,这样选定的 θ^ θ ^ 最有利于 x1,x2,,xn x 1 , x 2 , ⋯ , x n 的出现

(1) ( 1 ) 设总体 X X 离散型,其概率分布为P{X=x}=p(x;θ) θ θ 为未知参数, X1,X2,,Xn X 1 , X 2 , ⋯ , X n X X 的一个样本,则X1,X2,,Xn取值为 x1,x2,,xn x 1 , x 2 , ⋯ , x n 的概率是

P{X1=x1,X2=x2,,Xn=xn}=i=1nP{Xi=xi}=i=1np(xi;θ) P { X 1 = x 1 , X 2 = x 2 , ⋯ , X n = x n } = ∏ i = 1 n P { X i = x i } = ∏ i = 1 n p ( x i ; θ )

显然这个概率值是 θ θ 的函数,将其记为
L(θ)=L(x1,x2,,xn;θ)=i=1np(xi;θ) L ( θ ) = L ( x 1 , x 2 , ⋯ , x n ; θ ) = ∏ i = 1 n p ( x i ; θ )

L(θ) L ( θ ) 为样本 (x1,x2,,xn) ( x 1 , x 2 , ⋯ , x n ) 似然函数,若存在 θ^Θ θ ^ ∈ Θ 使得:
L(x1,x2,,xn;θ^)=maxθΘL(x1,x2,,xn;θ) L ( x 1 , x 2 , ⋯ , x n ; θ ^ ) = max θ ∈ Θ ⁡ L ( x 1 , x 2 , ⋯ , x n ; θ )

则称 θ^=θ^(x1,x2,,xn) θ ^ = θ ^ ( x 1 , x 2 , ⋯ , x n ) 为未知参数 θ θ 最大似然估计值,而相应的统计量 θ^=θ^(X1,X2,,Xn) θ ^ = θ ^ ( X 1 , X 2 , ⋯ , X n ) 称为参数 θ θ 最大似然估计量

(2) ( 2 ) 同理,如果总体 X X 连续型随机变量,其概率密度为f(x;θ),θΘ则样本的似然函数为

L(θ)=L(x1,x2,,xn;θ)=i=1nf(xi;θ) L ( θ ) = L ( x 1 , x 2 , ⋯ , x n ; θ ) = ∏ i = 1 n f ( x i ; θ )

若存在 θ^=θ^(x1,x2,,xn)Θ θ ^ = θ ^ ( x 1 , x 2 , ⋯ , x n ) ∈ Θ 使得 L(θ^)=maxθΘni=1f(xi;θ) L ( θ ^ ) = max θ ∈ Θ ⁡ ∏ i = 1 n f ( x i ; θ ) ,则称 θ^(x1,x2,,xn) θ ^ ( x 1 , x 2 , ⋯ , x n ) θ θ 的最大似然估计值,
相应的统计量 θ^=θ^(X1,X2,,Xn) θ ^ = θ ^ ( X 1 , X 2 , ⋯ , X n ) 称为参数 θ θ 的最大似然估计量。

求最大似然估计量的步骤

(1) ( 1 ) 写出样本的似然函数

L(x1,x2,,xn;θ1,θ2,,θk)=i=1np(xi;θ1,θ2,,θk)i=1nf(xi;θ1,θ2,,θk) L ( x 1 , x 2 , ⋯ , x n ; θ 1 , θ 2 , ⋯ , θ k ) = ∏ i = 1 n p ( x i ; θ 1 , θ 2 , ⋯ , θ k ) 或 ∏ i = 1 n f ( x i ; θ 1 , θ 2 , ⋯ , θ k )

(2) ( 2 ) 如果 p(x;θ1,θ2,,θk) p ( x ; θ 1 , θ 2 , ⋯ , θ k ) f(x;θ1,θ2,,θk) f ( x ; θ 1 , θ 2 , ⋯ , θ k ) 关于 θi(i=1,,k) θ i ( i = 1 , ⋯ , k ) 可微,则令 Lθi=0 ∂ L ∂ θ i = 0 或者 lnLθi=0 ∂ ln ⁡ L ∂ θ i = 0
由于 L(θ) L ( θ ) 是乘积形式,又 lnx ln ⁡ x x x 的单调增函数,由此L(θ) lnL(θ) ln ⁡ L ( θ ) 在同一 θ θ 处取得极值,所以更多的是采用对数似然方程的方法: lnLθi=0 ∂ ln ⁡ L ∂ θ i = 0 , 求得 θi θ i 的最大似然估计量
θ^i=θ^i(X1,X2,,Xn)(i=1,2,,k) θ ^ i = θ ^ i ( X 1 , X 2 , ⋯ , X n ) ( i = 1 , 2 , ⋯ , k )

(3) ( 3 ) 如果 p(x;θ1,θ2,,θk) p ( x ; θ 1 , θ 2 , ⋯ , θ k ) f(x;θ1,θ2,,θk) f ( x ; θ 1 , θ 2 , ⋯ , θ k ) 不可微,或者似然方程组无解,则应由定义用其他方法求得 θ^i θ ^ i ,例如当 L(θ) L ( θ ) θ θ 的单调增(或减)函数时, θ^ θ ^ θ θ 取值的上限(或下限)

最大似然估计量的不变性原则

θ^i θ ^ i 是总体分布中未知参数 θ θ 的最大似然估计,函数 u=u(θ) u = u ( θ ) 具有单值的反函数 θ=θ(u) θ = θ ( u ) ,则 u^=u(θ^) u ^ = u ( θ ^ ) u(θ) u ( θ ) 的最大似然估计。


估计量的评价标准

(1) ( 1 ) 无偏性
若参数 θ θ 的估计量 θ^=θ^(X1,X2,,Xn) θ ^ = θ ^ ( X 1 , X 2 , ⋯ , X n ) 对一切 n n θΘ,有 E(θ^)=θ E ( θ ^ ) = θ ,则称 θ^ θ ^ θ θ 无偏估计量,否则称为有偏估计量
(2) ( 2 ) 有效性(最小方差性)
θ^1=θ^1(X1,X2,,Xn) θ ^ 1 = θ ^ 1 ( X 1 , X 2 , ⋯ , X n ) θ^2=θ^2(X1,X2,,Xn) θ ^ 2 = θ ^ 2 ( X 1 , X 2 , ⋯ , X n ) 都是 θ θ 无偏估计量,如果 D(θ^1)<D(θ^2) D ( θ ^ 1 ) < D ( θ ^ 2 ) 则称 θ^1 θ ^ 1 θ^2 θ ^ 2 有效
(3) ( 3 ) 一致性(相合性)
θ^=θ^(X1,X2,,Xn) θ ^ = θ ^ ( X 1 , X 2 , ⋯ , X n ) 为未知参数 θ θ 的估计量,如果对于任意 ϵ>0 ϵ > 0 ,有 limnP{|θ^θ|<ϵ}=1 lim n → ∞ P { | θ ^ − θ | < ϵ } = 1 ,即 θ^Pθ(n) θ ^ ⟶ P ⁡ θ ( n → ∞ ) ,则称 θ^ θ ^ θ θ 一致估计量(或相合估计量)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值