有关秩的等式和不等式

最初的定义

行秩:矩阵行向量的最大线性无关组中向量的数量
列秩:矩阵列向量的最大线性无关组中向量的数量
秩:行秩和列秩都称为秩。且二者相等。


矩阵的秩和基础解系个数的关系
如果是一个 m×n m × n 的矩阵 A A
方程组中未知数的个数等于列数n
此时如果其基础解系个数是 r r
那么它的秩是nr
因为秩为 r r 所以可以确定的未知量有r个,也就是说有 nr n − r 个自由未知量,对这些未知量进行赋值就可以得出 nr n − r 个基础解系了

矩阵分块法

假设有矩阵

Am×n=a11a21am1a12a22am2a1na2namn A m × n = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n )

有关秩的等式和不等式

A A m×n矩阵, B B 是满足有关矩阵运算要求的矩阵,则
r(A)min(m,n)
r(A)=r(AT) r ( A ) = r ( A T )
r(A+B)r(A)+r(B) r ( A + B ) ≤ r ( A ) + r ( B )

r(AOOB)=r(AA+BOB)=r(A)+r(B)r(A+B)r(A)+r(B) r ( A O O B ) = r ( A O A + B B ) = r ( A ) + r ( B ) ∴ r ( A + B ) ≤ r ( A ) + r ( B )


r(A,B)r(A)+r(B) r ( A , B ) ≤ r ( A ) + r ( B )

设: α1,,αr α 1 , ⋯ , α r ,是矩阵 A A 的列向量的最大无关组,β1,,βs是矩阵 B B 列向量的最大无关组,于是在新的矩阵(A,B)中,所有新的列向量都可以使用 α1,,αr+β1,,βs α 1 , ⋯ , α r + β 1 , ⋯ , β s 来表示
r(A,B)r(α1,,αr,β1,,βs)r(A)+r(B) r ( A , B ) ≤ r ( α 1 , ⋯ , α r , β 1 , ⋯ , β s ) ≤ r ( A ) + r ( B )

r(kA)=r(A)(k0) r ( k A ) = r ( A ) ( k ≠ 0 )
r(AB)min(r(A),r(B)) r ( A B ) ≤ min ( r ( A ) , r ( B ) )

对于线性方程组 Bx=0 B x = 0 ,其解一定是 ABx=0 A B x = 0 的解,所以 Bx=0 B x = 0 的基础解系包含在 ABx=0 A B x = 0 的基础解系里,于是
nr(B)nr(AB)r(AB)r(B) n − r ( B ) ≤ n − r ( A B ) ⇒ r ( A B ) ≤ r ( B )

同理对于 ATx=0 A T x = 0 ,其解一定是 (AB)Tx=0 ( A B ) T x = 0 的解,于是得到:
mr(AT)mr((AB)T)r((AB)T)r(AT) m − r ( A T ) ≤ m − r ( ( A B ) T ) ⇒ r ( ( A B ) T ) ≤ r ( A T )

根据 r((AB)T)=r(AB) r ( ( A B ) T ) = r ( A B ) r(AT)=r(A) r ( A T ) = r ( A )
于是得到:
r(AB)min(r(A),r(B)) r ( A B ) ≤ min ( r ( A ) , r ( B ) )

如果 A A 是方阵
r(AAT)=r(A)

证明同上。

r(AB)r(A)+r(B)n r ( A B ) ≥ r ( A ) + r ( B ) − n

证明:分块矩阵法

(Am×nBn×sOn×sOm×nEn×n)(Am×nBn×sOn×sAm×nEn×n)(Om×sBn×sAm×nEn×n) ( A m × n B n × s O m × n O n × s E n × n ) ∼ ( A m × n B n × s A m × n O n × s E n × n ) ∼ ( O m × s A m × n − B n × s E n × n )

可以得到
r(Am×nBn×sOn×sOm×nEn×n)=r(Om×sBn×sAm×nEn×n) r ( A m × n B n × s O m × n O n × s E n × n ) = r ( O m × s A m × n − B n × s E n × n )

r(Am×nBn×sOn×sOm×nEn×n)=r(AB)+r(En×n)=r(AB)+n r ( A m × n B n × s O m × n O n × s E n × n ) = r ( A B ) + r ( E n × n ) = r ( A B ) + n

r(Om×sBn×sAm×nEn×n)r(A)+r(B) r ( O m × s A m × n − B n × s E n × n ) ≥ r ( A ) + r ( B )

于是乎得到:
r(AB)+nr(A)+r(B)r(AB)r(A)+r(B)n r ( A B ) + n ≥ r ( A ) + r ( B ) ⇒ r ( A B ) ≥ r ( A ) + r ( B ) − n

更一般的情况

r(ABC)r(AB)+r(BC)r(B) r ( A B C ) ≥ r ( A B ) + r ( B C ) − r ( B )

证明:分块矩阵法

(Am×nBn×sCs×tOn×tOm×sBn×s)(Am×nBn×sCs×tOn×sAm×nBn×sBn×s)(Om×tBn×sCs×tAm×nBn×sBn×s) ( A m × n B n × s C s × t O m × s O n × t B n × s ) ∼ ( A m × n B n × s C s × t A m × n B n × s O n × s B n × s ) ∼ ( O m × t A m × n B n × s − B n × s C s × t B n × s )

可以得到
r(Am×nBn×sCs×tOn×tOm×sBn×s)=r(Om×tBn×sCs×tAm×nBn×sBn×s) r ( A m × n B n × s C s × t O m × s O n × t B n × s ) = r ( O m × t A m × n B n × s − B n × s C s × t B n × s )

r(Am×nBn×sCs×tOn×tOm×sBn×s)=r(ABC)+r(B) r ( A m × n B n × s C s × t O m × s O n × t B n × s ) = r ( A B C ) + r ( B )

r(Om×tBn×sCs×tAm×nBn×sBn×s)r(AB)+r(BC) r ( O m × t A m × n B n × s − B n × s C s × t B n × s ) ≥ r ( A B ) + r ( B C )

于是乎得到:
r(ABC)+r(B)r(AB)+r(BC)r(ABC)r(AB)+r(BC)r(B) r ( A B C ) + r ( B ) ≥ r ( A B ) + r ( B C ) ⇒ r ( A B C ) ≥ r ( A B ) + r ( B C ) − r ( B )

AB=O A B = O 时, r(A)+r(B)n r ( A ) + r ( B ) ≤ n , n n A的列数(或 B B 的行数)
r([AOOB])=r(A)+r(B) r ( [ A O O B ] ) = r ( A ) + r ( B )

r(A)+r(B)r([ACOB])r(A)+r(B)+r(C) r ( A ) + r ( B ) ≤ r ( [ A O C B ] ) ≤ r ( A ) + r ( B ) + r ( C )

r(A)=n,1,0,r(A)=n,r(A)=n1r(A)<n1An r ( A ∗ ) = { n , r ( A ) = n , 1 , r ( A ) = n − 1 其 中 A 是 n 阶 方 阵 0 , r ( A ) < n − 1


  • 7
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值