最初的定义
行秩:矩阵行向量的最大线性无关组中向量的数量
列秩:矩阵列向量的最大线性无关组中向量的数量
秩:行秩和列秩都称为秩。且二者相等。
矩阵的秩和基础解系个数的关系
如果是一个
m×n
m
×
n
的矩阵
A
A
方程组中未知数的个数等于列数
此时如果其基础解系个数是
r
r
个
那么它的秩是
因为秩为
r
r
所以可以确定的未知量有个,也就是说有
n−r
n
−
r
个自由未知量,对这些未知量进行赋值就可以得出
n−r
n
−
r
个基础解系了
矩阵分块法
假设有矩阵
有关秩的等式和不等式
设
A
A
是矩阵,
B
B
是满足有关矩阵运算要求的矩阵,则
r(A)=r(AT)
r
(
A
)
=
r
(
A
T
)
r(A+B)≤r(A)+r(B)
r
(
A
+
B
)
≤
r
(
A
)
+
r
(
B
)
r(A,B)≤r(A)+r(B) r ( A , B ) ≤ r ( A ) + r ( B )
设: α1,⋯,αr α 1 , ⋯ , α r ,是矩阵 A A 的列向量的最大无关组,是矩阵 B B 列向量的最大无关组,于是在新的矩阵中,所有新的列向量都可以使用 α1,⋯,αr+β1,⋯,βs α 1 , ⋯ , α r + β 1 , ⋯ , β s 来表示
r(A,B)≤r(α1,⋯,αr,β1,⋯,βs)≤r(A)+r(B) r ( A , B ) ≤ r ( α 1 , ⋯ , α r , β 1 , ⋯ , β s ) ≤ r ( A ) + r ( B )
r(kA)=r(A)(k≠0) r ( k A ) = r ( A ) ( k ≠ 0 )
r(AB)≤min(r(A),r(B)) r ( A B ) ≤ min ( r ( A ) , r ( B ) )
对于线性方程组 Bx=0 B x = 0 ,其解一定是 ABx=0 A B x = 0 的解,所以 Bx=0 B x = 0 的基础解系包含在 ABx=0 A B x = 0 的基础解系里,于是
同理对于 ATx=0 A T x = 0 ,其解一定是 (AB)Tx=0 ( A B ) T x = 0 的解,于是得到:
根据 r((AB)T)=r(AB) r ( ( A B ) T ) = r ( A B ) 且 r(AT)=r(A) r ( A T ) = r ( A )
于是得到:
r(AB)≤min(r(A),r(B)) r ( A B ) ≤ min ( r ( A ) , r ( B ) )
如果
A
A
是方阵
证明同上。
r(AB)≥r(A)+r(B)−n
r
(
A
B
)
≥
r
(
A
)
+
r
(
B
)
−
n
证明:分块矩阵法
可以得到
于是乎得到:
r(AB)+n≥r(A)+r(B)⇒r(AB)≥r(A)+r(B)−n r ( A B ) + n ≥ r ( A ) + r ( B ) ⇒ r ( A B ) ≥ r ( A ) + r ( B ) − n
更一般的情况
r(ABC)≥r(AB)+r(BC)−r(B)
r
(
A
B
C
)
≥
r
(
A
B
)
+
r
(
B
C
)
−
r
(
B
)
证明:分块矩阵法
可以得到
于是乎得到:
r(ABC)+r(B)≥r(AB)+r(BC)⇒r(ABC)≥r(AB)+r(BC)−r(B) r ( A B C ) + r ( B ) ≥ r ( A B ) + r ( B C ) ⇒ r ( A B C ) ≥ r ( A B ) + r ( B C ) − r ( B )
AB=O A B = O 时, r(A)+r(B)≤n r ( A ) + r ( B ) ≤ n , n n 是的列数(或 B B 的行数)