伴随矩阵及其运算

关键公式:

∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB
#伴随矩阵及其运算
( 1 ) (1) (1)对于任意 n n n阶方阵 A A A,都有伴随矩阵 A ∗ A^* A,且有
A A ∗ = A ∗ A = ∣ A ∣ E , ∣ A ∗ ∣ = ∣ A ∣ n − 1 AA^*=A^*A=|A|E,|A^*|=|A|^{n-1} AA=AA=AE,A=An1

按照定义:
A − 1 = A ∗ ∣ A ∣ 所 以 A A ∗ = A ∗ A = ∣ A ∣ E A ∗ = ∣ A ∣ A − 1 ∣ A ∗ ∣ = ∣ ∣ A ∣ A − 1 ∣ = ∣ A ∣ n − 1 \begin{aligned}&A^{-1}=\dfrac{A^*}{|A|}\\ &所以 AA^*=A^*A=|A|E\\ &A^*=|A|A^{-1}\\ &|A^*|=\left||A|A^{-1}\right|\\ &=|A|^{n-1}\end{aligned} A1=AAAA=AA=AEA=AA1A=AA1=An1

∣ A ∣ ≠ 0 |A|\neq0 A̸=0时,有
A ∗ = ∣ A ∣ A − 1 , A − 1 = 1 ∣ A ∣ A ∗ , A = ∣ A ∣ ( A ∗ ) − 1 ( k A ) ( k A ) ∗ = ∣ k A ∣ E A T ( A T ) ∗ = ∣ A T ∣ E A − 1 ( A − 1 ) ∗ = ∣ A − 1 ∣ E A ∗ ( A ∗ ) ∗ = ∣ A ∗ ∣ E \begin{aligned}&A^*=|A|A^{-1},A^{-1}=\dfrac{1}{|A|}A^*,A=|A|(A^*)^{-1}\\ &(kA)(kA)^*=|kA|E\\ &A^T(A^T)^*=|A^T|E\\ &A^{-1}(A^{-1})^*=|A^{-1}|E\\ &A^*(A^*)^*=|A^*|E\\ \end{aligned} A=AA1,A1=A1A,A=A(A)1(kA)(kA)=kAEAT(AT)=ATEA1(A1)=A1EA(A)=AE

( 2 ) (2) (2) ( A T ) ∗ = ( A ∗ ) T , ( A − 1 ) ∗ = ( A ∗ ) − 1 , ( A B ) ∗ = B ∗ A ∗ , ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^T)^*=(A^*)^T,(A^{-1})^*=(A^*)^{-1},(AB)^*=B^*A^*,(A^*)^*=|A|^{n-2}A (AT)=(A)T,(A1)=(A)1,(AB)=BA,(A)=An2A


对于 A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) A=\begin{pmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{pmatrix} A=a11a21an1a12a22an2a1na2nann
A T = ( a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a n n ) A^T=\begin{pmatrix}a_{11}&a_{21}&\cdots&a_{n1}\\ a_{12}&a_{22}&\cdots&a_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{1n}&a_{2n}&\cdots&a_{nn}\\\end{pmatrix} AT=a11a12a1na21a22a2nan1an2ann

A ∗ = ∣ A ∣ A − 1 , A − 1 = 1 ∣ A ∣ A ∗ , A = ∣ A ∣ ( A ∗ ) − 1 A^*=|A|A^{-1},A^{-1}=\dfrac{1}{|A|}A^*,A=|A|(A^*)^{-1} A=AA1,A1=A1A,A=A(A)1
这个不需要证明:

( k A ) ( k A ) ∗ = ∣ k A ∣ E (kA)(kA)^*=|kA|E (kA)(kA)=kAE
这个显然

A T ( A T ) ∗ = ∣ A T ∣ E A^T(A^T)^*=|A^T|E AT(AT)=ATE
这个显然
A − 1 ( A − 1 ) ∗ = ∣ A − 1 ∣ E A^{-1}(A^{-1})^*=|A^{-1}|E A1(A1)=A1E
这个显然
A ∗ ( A ∗ ) ∗ = ∣ A ∗ ∣ E A^*(A^*)^*=|A^*|E A(A)=AE

这个显然
这些都只需要验证对应的矩阵是否可逆,
∣ A ∗ ∣ = ∣ ∣ A ∣ A − 1 ∣ = ∣ A ∣ n − 1 ≠ 0 |A^*|=\left||A|A^{-1}\right|=|A|^{n-1}\neq0 A=AA1=An1̸=0
∣ A T ∣ = ∣ A ∣ ≠ 0 |A^T|=|A|\neq0 AT=A̸=0
∣ A − 1 ∣ = ∣ A ∣ − 1 ≠ 0 |A^{-1}|=|A|^{-1}\neq0 A1=A1̸=0
∣ k A ∣ = k n ∣ A ∣ ≠ 0 |kA|=k^n|A|\neq0 kA=knA̸=0

( A T ) ∗ = ( A ∗ ) T (A^T)^*=(A^*)^T (AT)=(A)T

对于 A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) A=\begin{pmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{pmatrix} A=a11a21an1a12a22an2a1na2nann
A T = ( a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a n n ) A^T=\begin{pmatrix}a_{11}&a_{21}&\cdots&a_{n1}\\ a_{12}&a_{22}&\cdots&a_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{1n}&a_{2n}&\cdots&a_{nn}\\\end{pmatrix} AT=a11a12a1na21a22a2nan1an2ann
显然

( A − 1 ) ∗ = ( A ∗ ) − 1 (A^{-1})^*=(A^*)^{-1} (A1)=(A)1

( A ∗ ) − 1 = ( ∣ A ∣ A − 1 ) − 1 = 1 ∣ A ∣ A ( A − 1 ) ∗ = ∣ A − 1 ∣ ( A − 1 ) − 1 = 1 ∣ A ∣ A = ( A ∗ ) − 1 (A^*)^{-1}=(|A|A^{-1})^{-1}=\dfrac{1}{|A|}A\\ (A^{-1})^*=|A^{-1}|(A^{-1})^{-1}=\dfrac{1}{|A|}A=(A^*)^{-1} (A)1=(AA1)1=A1A(A1)=A1(A1)1=A1A=(A)1

( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA

( A B ) ∗ = ∣ A B ∣ ( A B ) − 1 = ∣ A ∣ ∣ B ∣ B − 1 A − 1 B ∗ A ∗ = ∣ B ∣ B − 1 ∣ A ∣ A − 1 (AB)^*=|AB|(AB)^{-1}=|A||B|B^{-1}A^{-1}\\ B^*A^*=|B|B^{-1}|A|A^{-1} (AB)=AB(AB)1=ABB1A1BA=BB1AA1

( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A

A ∗ ( A ∗ ) ∗ = ∣ A ∗ ∣ E ( A ∗ ) ∗ = ∣ A ∗ ∣ ( A ∗ ) − 1 E = ∣ A ∣ n − 1 ( ∣ A ∣ A − 1 ) − 1 = ∣ A ∣ n − 2 A A^*(A^*)^*=|A^*|E\\ (A^*)^*=|A^*|(A^*)^{-1}E\\ =|A|^{n-1}(|A|A^{-1})^{-1}\\ =|A|^{n-2}A A(A)=AE(A)=A(A)1E=An1(AA1)1=An2A

其他相关内容

线性方程组和矩阵
矩阵和行列式
向量组及其线性组合
向量组线性相关性
特征值和特征向量
相似矩阵和相似对角化
二次型
番外
向量空间
矩阵A可逆的和相似的一些性质
常见向量的运算
矩阵向量求导
矩阵对角化相关推导
伴随矩阵及其运算
关于特征值和特征向量的一些公式推导

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值