∣
A
B
∣
=
∣
A
∣
∣
B
∣
|AB|=|A||B|
∣AB∣=∣A∣∣B∣
#伴随矩阵及其运算
(
1
)
(1)
(1)对于任意
n
n
n阶方阵
A
A
A,都有伴随矩阵
A
∗
A^*
A∗,且有
A
A
∗
=
A
∗
A
=
∣
A
∣
E
,
∣
A
∗
∣
=
∣
A
∣
n
−
1
AA^*=A^*A=|A|E,|A^*|=|A|^{n-1}
AA∗=A∗A=∣A∣E,∣A∗∣=∣A∣n−1
按照定义:
A
−
1
=
A
∗
∣
A
∣
所
以
A
A
∗
=
A
∗
A
=
∣
A
∣
E
A
∗
=
∣
A
∣
A
−
1
∣
A
∗
∣
=
∣
∣
A
∣
A
−
1
∣
=
∣
A
∣
n
−
1
\begin{aligned}&A^{-1}=\dfrac{A^*}{|A|}\\ &所以 AA^*=A^*A=|A|E\\ &A^*=|A|A^{-1}\\ &|A^*|=\left||A|A^{-1}\right|\\ &=|A|^{n-1}\end{aligned}
A−1=∣A∣A∗所以AA∗=A∗A=∣A∣EA∗=∣A∣A−1∣A∗∣=∣∣∣A∣A−1∣∣=∣A∣n−1
当
∣
A
∣
≠
0
|A|\neq0
∣A∤=0时,有
A
∗
=
∣
A
∣
A
−
1
,
A
−
1
=
1
∣
A
∣
A
∗
,
A
=
∣
A
∣
(
A
∗
)
−
1
(
k
A
)
(
k
A
)
∗
=
∣
k
A
∣
E
A
T
(
A
T
)
∗
=
∣
A
T
∣
E
A
−
1
(
A
−
1
)
∗
=
∣
A
−
1
∣
E
A
∗
(
A
∗
)
∗
=
∣
A
∗
∣
E
\begin{aligned}&A^*=|A|A^{-1},A^{-1}=\dfrac{1}{|A|}A^*,A=|A|(A^*)^{-1}\\ &(kA)(kA)^*=|kA|E\\ &A^T(A^T)^*=|A^T|E\\ &A^{-1}(A^{-1})^*=|A^{-1}|E\\ &A^*(A^*)^*=|A^*|E\\ \end{aligned}
A∗=∣A∣A−1,A−1=∣A∣1A∗,A=∣A∣(A∗)−1(kA)(kA)∗=∣kA∣EAT(AT)∗=∣AT∣EA−1(A−1)∗=∣A−1∣EA∗(A∗)∗=∣A∗∣E
( 2 ) (2) (2) ( A T ) ∗ = ( A ∗ ) T , ( A − 1 ) ∗ = ( A ∗ ) − 1 , ( A B ) ∗ = B ∗ A ∗ , ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^T)^*=(A^*)^T,(A^{-1})^*=(A^*)^{-1},(AB)^*=B^*A^*,(A^*)^*=|A|^{n-2}A (AT)∗=(A∗)T,(A−1)∗=(A∗)−1,(AB)∗=B∗A∗,(A∗)∗=∣A∣n−2A
对于
A
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
)
A=\begin{pmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{pmatrix}
A=⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann⎠⎟⎟⎟⎞
A
T
=
(
a
11
a
21
⋯
a
n
1
a
12
a
22
⋯
a
n
2
⋮
⋮
⋱
⋮
a
1
n
a
2
n
⋯
a
n
n
)
A^T=\begin{pmatrix}a_{11}&a_{21}&\cdots&a_{n1}\\ a_{12}&a_{22}&\cdots&a_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{1n}&a_{2n}&\cdots&a_{nn}\\\end{pmatrix}
AT=⎝⎜⎜⎜⎛a11a12⋮a1na21a22⋮a2n⋯⋯⋱⋯an1an2⋮ann⎠⎟⎟⎟⎞
A
∗
=
∣
A
∣
A
−
1
,
A
−
1
=
1
∣
A
∣
A
∗
,
A
=
∣
A
∣
(
A
∗
)
−
1
A^*=|A|A^{-1},A^{-1}=\dfrac{1}{|A|}A^*,A=|A|(A^*)^{-1}
A∗=∣A∣A−1,A−1=∣A∣1A∗,A=∣A∣(A∗)−1
这个不需要证明:
(
k
A
)
(
k
A
)
∗
=
∣
k
A
∣
E
(kA)(kA)^*=|kA|E
(kA)(kA)∗=∣kA∣E
这个显然
A
T
(
A
T
)
∗
=
∣
A
T
∣
E
A^T(A^T)^*=|A^T|E
AT(AT)∗=∣AT∣E
这个显然
A
−
1
(
A
−
1
)
∗
=
∣
A
−
1
∣
E
A^{-1}(A^{-1})^*=|A^{-1}|E
A−1(A−1)∗=∣A−1∣E
这个显然
A
∗
(
A
∗
)
∗
=
∣
A
∗
∣
E
A^*(A^*)^*=|A^*|E
A∗(A∗)∗=∣A∗∣E
这个显然
这些都只需要验证对应的矩阵是否可逆,
∣
A
∗
∣
=
∣
∣
A
∣
A
−
1
∣
=
∣
A
∣
n
−
1
≠
0
|A^*|=\left||A|A^{-1}\right|=|A|^{n-1}\neq0
∣A∗∣=∣∣∣A∣A−1∣∣=∣A∣n−1̸=0
∣
A
T
∣
=
∣
A
∣
≠
0
|A^T|=|A|\neq0
∣AT∣=∣A∤=0
∣
A
−
1
∣
=
∣
A
∣
−
1
≠
0
|A^{-1}|=|A|^{-1}\neq0
∣A−1∣=∣A∣−1̸=0
∣
k
A
∣
=
k
n
∣
A
∣
≠
0
|kA|=k^n|A|\neq0
∣kA∣=kn∣A∤=0
(
A
T
)
∗
=
(
A
∗
)
T
(A^T)^*=(A^*)^T
(AT)∗=(A∗)T
对于
A
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
)
A=\begin{pmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{pmatrix}
A=⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann⎠⎟⎟⎟⎞
A
T
=
(
a
11
a
21
⋯
a
n
1
a
12
a
22
⋯
a
n
2
⋮
⋮
⋱
⋮
a
1
n
a
2
n
⋯
a
n
n
)
A^T=\begin{pmatrix}a_{11}&a_{21}&\cdots&a_{n1}\\ a_{12}&a_{22}&\cdots&a_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{1n}&a_{2n}&\cdots&a_{nn}\\\end{pmatrix}
AT=⎝⎜⎜⎜⎛a11a12⋮a1na21a22⋮a2n⋯⋯⋱⋯an1an2⋮ann⎠⎟⎟⎟⎞
显然
(
A
−
1
)
∗
=
(
A
∗
)
−
1
(A^{-1})^*=(A^*)^{-1}
(A−1)∗=(A∗)−1
(
A
∗
)
−
1
=
(
∣
A
∣
A
−
1
)
−
1
=
1
∣
A
∣
A
(
A
−
1
)
∗
=
∣
A
−
1
∣
(
A
−
1
)
−
1
=
1
∣
A
∣
A
=
(
A
∗
)
−
1
(A^*)^{-1}=(|A|A^{-1})^{-1}=\dfrac{1}{|A|}A\\ (A^{-1})^*=|A^{-1}|(A^{-1})^{-1}=\dfrac{1}{|A|}A=(A^*)^{-1}
(A∗)−1=(∣A∣A−1)−1=∣A∣1A(A−1)∗=∣A−1∣(A−1)−1=∣A∣1A=(A∗)−1
(
A
B
)
∗
=
B
∗
A
∗
(AB)^*=B^*A^*
(AB)∗=B∗A∗
(
A
B
)
∗
=
∣
A
B
∣
(
A
B
)
−
1
=
∣
A
∣
∣
B
∣
B
−
1
A
−
1
B
∗
A
∗
=
∣
B
∣
B
−
1
∣
A
∣
A
−
1
(AB)^*=|AB|(AB)^{-1}=|A||B|B^{-1}A^{-1}\\ B^*A^*=|B|B^{-1}|A|A^{-1}
(AB)∗=∣AB∣(AB)−1=∣A∣∣B∣B−1A−1B∗A∗=∣B∣B−1∣A∣A−1
(
A
∗
)
∗
=
∣
A
∣
n
−
2
A
(A^*)^*=|A|^{n-2}A
(A∗)∗=∣A∣n−2A
A
∗
(
A
∗
)
∗
=
∣
A
∗
∣
E
(
A
∗
)
∗
=
∣
A
∗
∣
(
A
∗
)
−
1
E
=
∣
A
∣
n
−
1
(
∣
A
∣
A
−
1
)
−
1
=
∣
A
∣
n
−
2
A
A^*(A^*)^*=|A^*|E\\ (A^*)^*=|A^*|(A^*)^{-1}E\\ =|A|^{n-1}(|A|A^{-1})^{-1}\\ =|A|^{n-2}A
A∗(A∗)∗=∣A∗∣E(A∗)∗=∣A∗∣(A∗)−1E=∣A∣n−1(∣A∣A−1)−1=∣A∣n−2A
其他相关内容
线性方程组和矩阵
矩阵和行列式
向量组及其线性组合
向量组线性相关性
特征值和特征向量
相似矩阵和相似对角化
二次型
番外
向量空间
矩阵A可逆的和相似的一些性质
常见向量的运算
矩阵向量求导
矩阵对角化相关推导
伴随矩阵及其运算
关于特征值和特征向量的一些公式推导