Scikit-network-09:Classification

Classification

PageRank

介绍基于Pagerank的图节点的分类,该节点基于几个节点的标签。

from IPython.display import SVG
import numpy as np

from sknetwork.data import karate_club, painters, movie_actor
from sknetwork.classification import PageRankClassifier
from sknetwork.visualization import svg_graph, svg_digraph, svg_bigraph

graph = karate_club(metadata=True)
adjacency = graph.adjacency
position = graph.position
labels_true = graph.labels
labels_true
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
seeds = {i: labels_true[i] for i in [0, 33]}
pagerank = PageRankClassifier()
labels_pred = pagerank.fit_transform(adjacency, seeds)
labels_pred
array([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
precision = np.round(np.mean(labels_pred==labels_true), 2)
precision
# 0.97
image = svg_graph(adjacency, position, labels=labels_pred, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification (here probability of label 1)
label = 1
membership = pagerank.membership_
scores = membership[:,label].toarray().ravel()
print(scores)
[0.85083397 0.67169185 0.53881723 0.71812199 0.86360047 0.86708137
 0.86708137 0.72814855 0.453558   0.28963328 0.86360047 0.85626903
 0.80825129 0.57509049 0.18758663 0.18758663 0.87180985 0.79336306
 0.18758663 0.54964922 0.18758663 0.79336306 0.18758663 0.21970262
 0.33534748 0.31974366 0.16306381 0.28127132 0.32151073 0.18639406
 0.35142577 0.40884207 0.25890729 0.15608262]
image = svg_graph(adjacency, position, scores=scores, seeds=seeds)
SVG(image)

在这里插入图片描述

有向图

graph = painters(metadata=True)
adjacency = graph.adjacency
position = graph.position
names = graph.names

rembrandt = 5
klimt = 6
cezanne = 11
seeds = {cezanne: 0, rembrandt: 1, klimt: 2}

pagerank = PageRankClassifier()
labels = pagerank.fit_transform(adjacency, seeds)
labels
# array([2, 0, 1, 0, 1, 1, 2, 0, 2, 1, 0, 0, 0, 2])

image = svg_digraph(adjacency, position, names, labels=labels, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification
membership = pagerank.membership_
scores = membership[:, 0].toarray().ravel()
image = svg_digraph(adjacency, position, names, scores=scores, seeds=[cezanne])
SVG(image)

在这里插入图片描述

二部图

graph = movie_actor(metadata=True)
biadjacency = graph.biadjacency
names_row = graph.names_row
names_col = graph.names_col

inception = 0
drive = 3
budapest = 8

pagerank = PageRankClassifier()
pagerank.fit(biadjacency, seeds_row)
labels_row = pagerank.labels_row_
labels_col = pagerank.labels_col_

image = svg_bigraph(
    biadjacency, names_row, names_col, labels_row, labels_col, seeds_row=seeds_row)

SVG(image)

在这里插入图片描述

# soft classification
membership_row = pagerank.membership_row_
membership_col = pagerank.membership_col_

label = 1
scores_row = membership_row[:,label].toarray().ravel()
scores_col = membership_col[:,label].toarray().ravel()

image = svg_bigraph(biadjacency, names_row, names_col, scores_row=scores_row, scores_col=scores_col,
                    seeds_row=seeds_row)
SVG(image)

在这里插入图片描述


Diffusion

扩散算法是一种数据处理方法,目的在于通过扩散处理使得元素之间相互影响,从而实现完全的雪崩效应。

from IPython.display import SVG
import numpy as np
from sknetwork.data import karate_club, painters, movie_actor
from sknetwork.classification import DiffusionClassifier
from sknetwork.visualization import svg_graph, svg_digraph, svg_bigraph

graph = karate_club(metadata=True)
adjacency = graph.adjacency
position = graph.position
labels_true = graph.labels

seeds = {i: labels_true[i] for i in [0, 33]}
diffusion = DiffusionClassifier()
labels_pred = diffusion.fit_transform(adjacency, seeds)
labels_pred
# [1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

precision = np.round(np.mean(labels_pred==labels_true), 2)
precision
# 0.94

image = svg_graph(adjacency, position, labels=labels_pred, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification (here probability of label 1)
scores = diffusion.score(label=1)
image = svg_graph(adjacency, position, scores=scores, seeds=seeds)
SVG(image)

在这里插入图片描述

有向图

graph = painters(metadata=True)
adjacency = graph.adjacency
position = graph.position
names = graph.names

rembrant = 5
cezanne = 11
seeds = {cezanne: 0, rembrant: 1}

diffusion = DiffusionClassifier()
labels = diffusion.fit_transform(adjacency, seeds)

image = svg_digraph(adjacency, position, names, labels=labels, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification (here probability of label 0)
scores = diffusion.score(label=0)
image = svg_digraph(adjacency, position, names=names, scores=scores, seeds=[cezanne])
SVG(image)

在这里插入图片描述

二部图

graph = movie_actor(metadata=True)
biadjacency = graph.biadjacency
names_row = graph.names_row
names_col = graph.names_col

inception = 0
drive = 3
seeds_row = {inception: 0, drive: 1}

diffusion = DiffusionClassifier()
diffusion.fit(biadjacency, seeds_row)
labels_row = diffusion.labels_row_
labels_col = diffusion.labels_col_

image = svg_bigraph(biadjacency, names_row, names_col, labels_row, labels_col, seeds_row=seeds_row)
SVG(image)

在这里插入图片描述

# soft classification
membership_row = diffusion.membership_row_
membership_col = diffusion.membership_col_

# probability of label 1
score_row = membership_row[:, 1].toarray().ravel()
score_col = membership_col[:, 1].toarray().ravel()

image = svg_bigraph(
    biadjacency, names_row, names_col, scores_row=scores_row,
    scores_col=scores_col, seeds_row=seeds_row)

SVG(image)

在这里插入图片描述


Dirichlet

根据几个节点的标签介绍基于Dirichlet算法的图节点的分类,狄利克雷分布

from IPython.display import SVG
import numpy as np
from sknetwork.data import karate_club, painters, movie_actor
from sknetwork.classification import DirichletClassifier
from sknetwork.visualization import svg_graph, svg_digraph, svg_bigraph

graph = karate_club(metadata=True)
adjacency = graph.adjacency
position = graph.position
labels_true = graph.labels

seeds = {i: labels_true[i] for i in [0, 33]}

dirichlet = DirichletClassifier()
labels_pred = dirichlet.fit_transform(adjacency, seeds)

precision = np.round(np.mean(labels_pred==labels_true), 2)
precision
# 0.97

image = svg_graph(adjacency, position, labels=labels_pred, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification (here probability of label 1)
membership = dirichlet.membership_
scores = membership[:,1].toarray().ravel()

image = svg_graph(adjacency, position, scores=scores, seeds=seeds)
SVG(image)

在这里插入图片描述

有向图

graph = painters(metadata=True)
adjacency = graph.adjacency
position = graph.position
names = graph.names

rembrandt = 5
klimt = 6
cezanne = 11
seeds = {cezanne: 0, rembrandt: 1, klimt: 2}

dirichlet = DirichletClassifier()
labels = dirichlet.fit_transform(adjacency, seeds)
image = svg_digraph(adjacency, position, names, labels=labels, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification (here probability of label 0)
membership = dirichlet.membership_
scores = membership[:,0].toarray().ravel()

image = svg_digraph(adjacency, position, names=names, scores=scores, seeds=[cezanne])
SVG(image)

在这里插入图片描述

二部图

graph = movie_actor(metadata=True)
biadjacency = graph.biadjacency
names_row = graph.names_row
names_col = graph.names_col

inception = 0
drive = 3
budapest = 8

seeds_row = {inception: 0, drive: 1, budapest: 2}

dirichlet = DirichletClassifier()
dirichlet.fit(biadjacency, seeds_row)
labels_row = dirichlet.labels_row_
labels_col = dirichlet.labels_col_

image = svg_bigraph(biadjacency, names_row, names_col, labels_row, labels_col, seeds_row=seeds_row)
SVG(image)

在这里插入图片描述

# soft classification (here probability of label 1)
membership_row = dirichlet.membership_row_
membership_col = dirichlet.membership_col_

scores_row = membership_row[:,1].toarray().ravel()
scores_col = membership_col[:,1].toarray().ravel()

image = svg_bigraph(biadjacency, names_row, names_col, scores_row=scores_row, scores_col=scores_col,
                    seeds_row=seeds_row)
SVG(image)

在这里插入图片描述


Propagation

介绍基于标签传播算法的图节点的分类。

from IPython.display import SVG
import numpy as np
from sknetwork.data import karate_club, painters, movie_actor
from sknetwork.classification import Propagation
from sknetwork.visualization import svg_graph, svg_digraph, svg_bigraph

graph = karate_club(metadata=True)
adjacency = graph.adjacency
position = graph.position
labels_true = graph.labels

seeds = {i: labels_true[i] for i in [0, 33]}
labels_true, len(labels_true)
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

propagation = Propagation()
labels_pred = propagation.fit_transform(adjacency, seeds)
labels_pred

image = svg_graph(adjacency, position, labels=labels_pred, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification
label = 1
membership = propagation.membership_
scores = membership[:, label].toarray().ravel()

image = svg_graph(adjacency, position, scores=scores, seeds=seeds)
SVG(image)

在这里插入图片描述

有向图

graph = painters(metadata=True)
adjacency = graph.adjacency
position = graph.position
names = graph.names

rembrandt = 5
klimt = 6
cezanne = 11
seeds = {cezanne: 0, rembrandt: 1, klimt: 2}

propagation = Propagation()
labels = propagation.fit_transform(adjacency, seeds)

image = svg_digraph(adjacency, position, names, labels=labels, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification
membership = propagation.membership_
scores = membership[:,0].toarray().ravel()

image = svg_digraph(adjacency, position, names, scores=scores, seeds=[cezanne])
SVG(image)

在这里插入图片描述

二部图

graph = movie_actor(metadata=True)
biadjacency = graph.biadjacency
names_row = graph.names_row
names_col = graph.names_col

inception = 0
drive = 3
budapest = 8

seeds_row = {inception: 0, drive: 1, budapest: 2}

propagation = Propagation()
labels_row = propagation.fit_transform(biadjacency, seeds_row)
labels_col = propagation.labels_col_

image = svg_bigraph(biadjacency, names_row, names_col, labels_row, labels_col, seeds_row=seeds_row)
SVG(image)

在这里插入图片描述

# soft classification
membership_row = propagation.membership_row_
membership_col = propagation.membership_col_

scores_row = membership_row[:,1].toarray().ravel()
scores_col = membership_col[:,1].toarray().ravel()

image = svg_bigraph(biadjacency, names_row, names_col, scores_row=scores_row, scores_col=scores_col, seeds_row=seeds_row)
SVG(image)

在这里插入图片描述


Nearest neighbors

基于几个节点的标签介绍K-Nearest邻居算法对图节点的分类。

from IPython.display import SVG
import numpy as np
from sknetwork.data import karate_club, painters, movie_actor
from sknetwork.classification import KNN
from sknetwork.embedding import GSVD
from sknetwork.visualization import svg_graph, svg_digraph, svg_bigraph

graph = karate_club(metadata=True)
adjacency = graph.adjacency
position = graph.position
labels_true = graph.labels

seeds = {i: labels_true[i] for i in [0, 33]}

knn = KNN(GSVD(3), n_neighbors=1)  # 通过邻接矩阵的广义奇异值分解说明了图的嵌入
labels_pred = knn.fit_transform(adjacency, seeds)

precision = np.round(np.mean(labels_pred == labels_true), 2)
precision
# 0.97

image = svg_graph(adjacency, position, labels=labels_pred, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification (here probability of label 1)
knn = KNN(GSVD(3), n_neighbors=2)
knn.fit(adjacency, seeds)
membership = knn.membership_

scores = membership[:,1].toarray().ravel()
scores

image = svg_graph(adjacency, position, scores=scores, seeds=seeds)
SVG(image)

在这里插入图片描述

有向图

graph = painters(metadata=True)
adjacency = graph.adjacency
position = graph.position
names = graph.names

rembrandt = 5
klimt = 6
cezanne = 11
seeds = {cezanne: 0, rembrandt: 1, klimt: 2}

knn = KNN(GSVD(3), n_neighbors=2)
labels = knn.fit_transform(adjacency, seeds)

image = svg_digraph(adjacency, position, names, labels=labels, seeds=seeds)
SVG(image)

在这里插入图片描述

# soft classification
membership = knn.membership_
scores = membership[:,0].toarray().ravel()

image = svg_digraph(adjacency, position, names, scores=scores, seeds=[cezanne])
SVG(image)

在这里插入图片描述

二部图

graph = movie_actor(metadata=True)
biadjacency = graph.biadjacency
names_row = graph.names_row
names_col = graph.names_col

inception = 0
drive = 3
budapest = 8

seeds_row = {inception: 0, drive: 1, budapest: 2}

knn = KNN(GSVD(3), n_neighbors=2)
labels_row = knn.fit_transform(biadjacency, seeds_row)
labels_col = knn.labels_col_

image = svg_bigraph(biadjacency, names_row, names_col, labels_row, labels_col, seeds_row=seeds_row)
SVG(image)

在这里插入图片描述

# soft classification
membership_row = knn.membership_row_
membership_col = knn.membership_col_

scores_row = membership_row[:,1].toarray().ravel()
scores_col = membership_col[:,1].toarray().ravel()

image = svg_bigraph(biadjacency, names_row, names_col, scores_row=scores_row, scores_col=scores_col,
                    seeds_row=seeds_row)
SVG(image)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>